
CONSTRAINTS: notes by BERNARD F. WHITING

Whether for practical reasons or of necessity, we often find ourselves considering dy-

namical systems which are subject to physical constraints. In such situations it is possible

to consider redefining the dynamical variables in a theory so that constrained and un-

constrained degrees of freedom become decoupled. For situations where that separation

cannot be carried out explicitly, or it is undesirable to do so, Dirac has introduced a con-

struction which acts as an effective Poisson bracket on the physical phase space, in which

the constrained degrees of freedom can be essentially eliminated. In these notes we shall

look basically at methods for categorizing and dealing with constraints in dynamical sys-

tems, noticing an important distinction between constraints of different type, and illustrate

Dirac’s procedure with a simple example. In fact, as we shall see, most points which need

to be made can be demonstrated very well with simple examples.

A complete understanding of constrained dynamical systems requires a thorough

knowledge of classical Hamiltonian theory. By the use of a number of carefully selected

examples I will attempt to show how this knowledge is used, and how it may be usefully

extended without deviating from the spirit of the traditional Hamiltonian approach. In

order to illustrate the difference in the kinds of constraints that arise, we can begin with

two examples of problems which should be quite familiar. Then a minimal set of skills

necessary to proceed will be briefly described. Finally simple examples showing how these

procedures can be put into practice will be given.

Examples distinguishing constraint types

i) Constraints form canonical pairs

This example concerns particle motion confined to the surface of a sphere. We suppose

that the Lagrangian for the system is given by:

L =
m

2
(ẋ2 + ẏ2 + ż2) − V (x, y, z),

subject to the constraint

φ1 =
√
x2 + y2 + z2 − a ≈ 0 ,

(where ≈ 0 implies “is zero when the constraint (φ1) is imposed”) which fixes the radius

of the sphere. The conjugate momenta for this system are defined by:

px = mẋ , py = mẏ , pz = mż ,



which give rise to the canonical Hamiltonian

Hc = pq̇ − L =
1

2m
(
p2

x + p2
y + p2

z

)
+ V (x, y, z) .

However, for this constrained system we take the canonical generator of time translations

to be the primary Hamiltonian given by:

Hp = Hc + λφ1 ,

where λ is taken as a Lagrange multiplier [Note: λ is not considered to be a dynamical

variable and it has no canonically conjugate momentum, but variation of Hp with respect

to λ enforces the constraint φ1 = 0.]

Before proceeding, we need to determine whether there are any additional constraints

arising from the requirement that φ1 = 0 be maintained in time. To this end, we compute:

φ̇1 = {φ1 ,H} =
1

m
√
x2 + y2 + z2

(xpx + ypy + zpz) ,

where by definition,

{x(q, p), y(q, p)} ≡ ∂x

∂qi

∂y

∂pi

− ∂x

∂pi

∂y

∂qi
.

Since φ̇1 does not automatically vanish, we must impose it as an additional constraint:

φ2 =
1√

x2 + y2 + z2
(xpx + ypy + zpz) ≈ 0 .

Then
φ̇2 = {φ2 ,Hp}

= {φ2 ,Hc} + λ {φ2 , φ1} ,

in which we can always impose φ̇2 = 0 by solving for λ (which, in general, will be time

dependent), since {φ1 , φ2} = 1 is non-zero. In fact we see that even though φ1 and φ2

should be zero, they satisfy the conditions of a pair of canonical coordinates on phase space:

but in this formulation φ1 and φ2 are not independent of the other canonical variables x, y, z

and px, py and pz. Can we effect a canonical transformation which disentangles constraint

degrees of freedom from dynamically non-trivial degrees of freedom?

We could have eliminated all necessity of constraints in this problem by starting in

spherical polar coordinates with r = a, and ṙ = 0 imposed explicitly in the Lagrangian,

so the answer to our question should be an obvious ‘yes.’ However, to get a feel for what

the question involves it’s useful to reformulate this particular problem in spherical polar
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coordinates while maintaining the original constraint. Thus, for the Lagrangian we would

have:

L =
m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− V (r, θ, φ) .

and for the constraint:

φ1 = r − a = 0 .

The canonical momenta are now given by

pr = mṙ , pθ = mr2θ̇ and pφ = mr2 sin2 θφ̇ ,

so that Hc becomes
1

2m

(
p2

r +
p2

θ

r2
+

p2
φ

r2 sin2 θ

)
+ V (r, θ, φ) ,

while the definition of Hp in terms of Hc and φ1 remains unchanged. Similarly

φ̇1 = {φ1 ,Hp} = pr ,

so that φ2 simplifies considerably to

φ2 = pr .

Then

φ̇2 = {φ2,Hc} + λ

which can again be solved for λ. Now, however, we see that our canonical variables can be

split into two groups: θ, pθ, φ and pφ which are now unconstrained; and φ1 = r−a, φ2 = pr,

which have decoupled from the remainder, and are both constrained to vanish. In other

words, we have found the answer to the question posed above. We now consider another

familiar example.

ii) Conjugate of constraints totally unconstrained

The most important observation here is that the constraints will be of a different type.

This second example is electromagnetism, for which we consider the Lagrangian density

to be (cartesian coordinates in flat space will be assumed throughout):

L = −1
4
FµνF

µν + λjµAµ

in which Fµν = ∂µAν−∂νAµ, and λ is now a coupling constant, NOT a Lagrange multiplier.

In this Lagrangian density, A0 has no time derivative, so the definition Πµ = ∂L
∂Ȧµ

will

introduce the constraint

φ0 = Π0 ≈ 0 .
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The canonical Hamiltonian density can be shown to be

Hc =
1
2
ΠiΠi + Πi∂iA0 +

1
4
FijF

ij − λjµAµ ,

while the Hamiltonian density generating canonical time translations is

Hp = Hc + ϑ(xµ)φ0 .

Then

φ̇0 = {φ0,Hp} = ∂iΠi + λj0 ,

which requires us to introduce the additional constraint

φ1 = ∂iΠi + λj0 ≈ 0 .

For the time derivative, we now compute:

φ̇1 = {∂iΠi,Hp} + λ∂0j
0 = λ∂µj

µ

In this case we cannot solve for the Lagrange multiplier ϑ(xµ), but must instead restrict

our attention to sources whose current is conserved. Note in particular that

{φ0, φ1} = 0 ,

So now φ0 and φ1 do not form a canonical pair. In fact if we decompose Ai and Πi into

(orthogonal) transverse and longitudinal components

Ai = AT
i +AL

i and Πi = ΠTi + ΠLi

(where V Ti satisfies ∂iV
Ti = 0), AT

i ,Π
Ti represent two dynamical degrees of freedom,

while (A0,Π0) and (A, ∂iΠLi) (where AL
i = ∂iA) represents decoupled degrees of freedom

in which Π0 = φ0 and ∂iΠLi = φ1 − λj0 are given by constraints, while canonical time

evolution can tell us nothing at all about the time dependence of A0, nor A if we follow

the gauge theory approach indicated below. With this decomposition all other relevant

Poisson brackets vanish and (up to integration by parts) the Hamiltonian density can be

broken into decoupled disjoint parts

H = HT + HL .

The constraints here are of a different type to those in the previous example, because they

no longer form conjugate pairs; instead, their conjugates dynamically decouple from the
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physical degrees of freedom and their time dependence may no longer be governed by the

dynamical equations of the theory.

Handling constraints in dynamical systems

In the first example considered above, we could use our knowledge of the problem to

achieve a definite split between the dynamical and non dynamical degrees of freedom. This

splitting, once obtained, essentially allows us to discard the constrained canonical variables.

Practitioners have seen that simple problems like this could indicate a general principle to

pursue with constraints of this type. In the second example, the split was perhaps much less

obvious - it is actually considerably clearer in momentum space - and the different character

of the constraints is related to the deep rooted property that electromagnetism couples to

conserved currents. Since it occupies such an important place in Physics, electromagnetism

as a gauge theory is often taken as the archetypical model for systems with this kind of

constraints. (Although electromagnetism is a field theory, the theory discussed in Example

2a below, has the same kind of constraints with finite degrees of freedom.)

In all situations, the principle of disentangling will be the same: i.e. one tries to so

categorize the dynamical variables and the relations between them that a subset of them

can be regarded as obeying an unconstrained dynamics, while the remainder decouple

and become dynamically - if not physically - irrelevant (at least in classical mechanics).

Fortunately, Dirac has put forward a formulation which deals with the situation where the

split is too difficult to achieve explicitly, or where it may even be technically impossible.

Before going on to consider Dirac’s formulation it will be useful to establish more clearly

the distinction between the two types of constraint which we have already encountered.

Although usually not described quite this way, the classification of constraints I will

give makes most sense if we can imagine that the dynamical and constrained degrees of

freedom have already been separated, and that each group can really be re-organized into

distinct canonical pairs. Then,

when a pair of canonical variables p, q st {q, p} = 1 are both constraints, we describe

the constraints as being second class. When, in a canonical pair, only one variable is a

constraint, we describe that constraint as being first class. Only true dynamical degrees of

freedom commute with all the constraints.

Up to this point, what has been said is consistent with the usage given by most authors

in the field. Even the terminology I have used so far is not standard in the literature, but

beyond this point also the general procedure to follow is not universally accepted. Some
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would have us introduce additional ‘gauge fixing’ conditions, Ca(q, p) = 0, to convert

all first class constraints into second class constraints. In other situations we would be

persuaded to introduce extra degrees of freedom so that all second class constraints can

be transformed into first class constraints (this may lead to some modification of the effect

of the original constraints - see the comments concerning Example 3 below), and then the

whole problem can be treated as an extended gauge theory. In either case, the purpose is

to allow eventually for a uniform treatment of the adjusted system.

For concreteness, I will follow a development compatible with Dirac’s, though not

always following his exquisite logic. As one can see, the main objective indicated is to

come up with a well defined set of quantities, the (true) dynamical variables of the reduced

phase space, which commute with all the constraints. When such a split is not possible

in the second class case, we shall follow Dirac directly and introduce a modified bracket

(it is actually a Poisson bracket on the reduced phase space), which serves to govern the

dynamics in the same way that the Poisson bracket does for unconstrained systems. To

define Dirac’s bracket we must first define the ‘matrix’ of Poisson brackets for all the second

class constraints:

Cij = {φi, φj} ,

which is non-singular and therefore invertible. In terms of its inverse, (C−1)ij, we can then

define the Dirac bracket:

{A,B}DB = {A,B} − {A, φi}(C−1)ij{φi, B} ,

This does not depend, for its definition, on the constraints being isolated from the remaining

dynamical variables, nor does it require that they already be organized into canonical

pairs. (However, we do have to be able to distinguish the first from the second class

constraints, since the former would prevent the matrix of Poisson brackets from being

invertible.) Furthermore, this definition has the obvious property that the Dirac bracket

of a constraint with anything else will always be zero. Thus, all physical quantities ‘Dirac

bracket commute’ with all constraints, a condition which renders the constraints classically

irrelevant, even if they cannot be separated explicitly from the true degrees of freedom.

Nest, we discuss the first class case. There is a general tendency to attempt to

interpret first class constraints as generates of gauge transformations, though Example 2a

below provides a counterexample. Since gauge theories do occur frequently in physics, we

need to be able to handle them, and since one is often required to fix a gauge even in

classical theory, I will consider this approach briefly using electromagnetism in Example 4
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below. Normally, we would attempt to decouple first class constraints and true dynamical

degrees of freedom whenever it is possible to do so. When that is not possible, resort to

gauge fixing may become desirable, but then we often have to tackle the problem of the

non-existence of a global gauge condition.

Locally, gauge fixing conditions, Ca = 0, which really serve as additional constraints,

are generally required to satisfy two criteria:

i) given any set of canonical variables, there must exist a gauge transformation which

brings it into the chosen gauge, and

ii) the chosen conditions must fix the gauge completely.

Together, these two criteria imply that there must be just as many gauge conditions as

there are first class constraints, and that the commutators

{Ca, φb}

form an invertible matrix, where φb are the original first class constraints, by this construc-

tion turned into second class constraints.

Some authors define a number of additional Hamiltonians. Typically, the first and

second class constraints are separated, with the multiplier conditions for the latter being

incorporated back into the Hamiltonian. As I will illustrate in Example 3, this can lead to

changes, though they are “unphysical,” in the value of the constrained degrees of freedom.

Another modification is employed in the first class case (since those of interest are generally

gauge theories), if there are additional such constraints which were not present in the pri-

mary Hamiltonian: this modification results in extra Lagrange multipliers being introduced

for the subsidiary first class constraints, leading to an ‘extended’ Hamiltonian. I prefer

to understand the situation, in the first place, without these additional measures, since

they depend for their validity, on further information about the true nature of the physical

system being considered. But for typical physical applications they may be essential.

Before going on to consider specific examples, several further comments are in order.

First, an important point which is often neglected is that for the various definitions to

be workable, the constraints must satisfy certain regularity properties. These can be best

exemplified by saying that, in any variation for which δq and δp are O(ε), then δφ(q, p)

must also be O(ε). Thus of

p = 0, p2 = 0,
√
p = 0,

only the first is acceptable, while for

p2
1 + p2

2 = 0, which implies p1 = 0, p2 = 0,
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only the latter two constraints are acceptable. Finally, none of this at all is necessary if

we simply wish to know a set of equations to solve for the dynamics. However, it does

serve a purpose if we wish to know how to remove non-dynamical degrees of freedom

from the formulation. This, in particular, may be essential if we are to avoid quantizing

non-dynamical aspects of the problem, and is the main area where current interest in the

subject lies.

Illustrative examples

Example 1

This first example stresses that any quantity depending upon 2N degrees of freedom can-

not arbitrarily be treated as a canonical Hamiltionian. In fact, this example also deals

with a situation in which a purported Hamiltonian has an odd number of arguments, a

circumstance which arises frequently for coherent states based on generalized group rep-

resentations. A canonical Hamiltonian is properly defined as a function(al) of paired sets

of variables, the coordinates of phase space which generate its symplectic geometry. Thus

the function

F (a, b, c) = V (c) +
1
2
(a2 + b2) ,

is not, strictly speaking, a Hamiltonian, since no pairing of the variables is indicated which

would require them to satisfy the Possion bracket relation {q, p} = 1. In the way by which

interest in this particular problem arises, its author was really looking at a situation which

can be best described by a Lagrangian in a non-traditional first order form:

L = ȧ cos c+ ḃ sin c− V (c) − 1
2
(a2 + b2) .

It is obvious that if we now try to identify

pa = cos c, pb = sin c, pc = 0 ,

then each of these must be regarded as giving rise to a separate constraint:

φ0 = pa − cos c

φ1 = pb − sin c

φ2 = pc

Thus, the primary Hamiltonian becomes:

Hp = V (c) +
1
2
(a2 + b2) + λ0(pa − cos c) + λ1(pb − sin c) + λ2pc .
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As previously, we now look to see if their are any additional constraints:

φ̇0 = {φ0,Hp} = −a + sin cλ2

φ̇1 = {φ1,Hp = −b − cos cλ2

φ̇2 = {φ2,Hp} = −
{
∂V

∂c
+ λ0 sin c− λ1 cos c

}

These give the one additional constraint

ψ = a cos c+ b sin c ,

for which we find

ψ̇ = {ψ,Hp} = λ0 cos c+ λ1 sin c+ λ2(−a sin c+ b cos c) .

Now we have a set of equations sufficient to find all the λ’s. As none of the λ’s remain

undetermined, all the constraints will turn out to be second class. Thus only two dynamical

variables will remain, corresponding to one unconstrained canonical degree of freedom. We

can tell that there is only one unconstrained canonical degree of freedom in the problem,

without having found it explicitly at this stage.

In this problem, the constrained and unconstrained degrees of freedom can be de-

coupled. To carry that out it is helpful to proceed in several discrete steps. We consider,

then, the set of variables

A = a cos c+ b sin c = ψ1 ≈ 0 ,

PA = pa cos c+ pb sin c− 1 = φ0 cos c+ φ1 sin c = φ̃0 ≈ 0

B̃ = −a sin c+ b cos c ,

PB = −pa sin c+ pb cos c = −φ0 sin c+ φ1 cos c = φ̃1 ≈ 0

C = c , pc = φ2 ≈ 0 .

Note
{A, pc} = B̃ , {PA, pc} = PB

{B̃, pc} = −A , {PB, pc} = −PA − 1

Finally, we introduce:

PC = pc − B̃(PA + 1) + APB ,

and

B = B̃ + PC = φ2 − B̃φ̃0 + ψ1φ̃1 ,

which has become a constraint replacing pc. Now we have A ≈ 0, PA ≈ 0, B ≈ 0 & PB ≈ 0

as second class constraints, while C & PC survive as an unconstrained canonical pair; i.e.
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we have conveniently arranged our degrees of freedom into two canonical pairs composed

entirely of constraints, and one remaining pair representing the only true dynamical degree

of freedom in the problem.

A judicious change of variables at the beginning (and, perhaps, with hindsight) can

greatly simplify the ensuring analysis. Since it will provide us with material for a later

example, we now carry this out. With the new definitions

A = a cos c+ b sin c

B = −a sin c+ b cos c

we find that the Lagrangian can be rewritten as

L = Ȧ−BĊ − V (c) − 1
2
(A2 +B2)

in which the ‘A’ degree of freedom decouples completely, and the further identification

Pc ≡ −B even eliminates the remaining pair of second class constraints, bringing us to the

point we finished with above regarding the single ‘true’ dynamical degree of freedom.

Example 2

This second example shows that sometimes, whether constraints are first or second class

can depend on properties of the Hamiltonian. We shall also use this example to give a

specific illustration of Dirac’s procedure. the example is provided by the Lagrangian:

L =
1
2
eyẋz − V (x, y) .

It is clear that in this case there is one primary constraint.

φ0 = py ,

so that the primary Hamiltonian becomes

Hp =
1
2
e−yp2

x + V (x, y) + λpy

For the time derivative of φ0 we find

φ̇0 = {φ0,H} =
1
2
e−yp2

x −
∂V

∂y

indicating that we must introduce an additional constraint (which we assume to be):

φ1 = px − f(x, y), where f 2(x, y) = 2ey ∂V (x, y)
∂y

.
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The time derivative of φ1 leads to an equation for λ.

φ̇1 = {φ1,H} = −∂V
∂x

+ λ
∂f

∂y
≈ 0 ,

while the Possion bracket {φ0, φ1} does not vanish, so these contraints are second class.

Now, one reason why this example is interesting is that without specific knowledge

of V (x, y), we cannot explicitly decouple the constraints from the dynamical degrees of

freedom. This is where Dirac’s procedure comes to our rescue. Using the definition given

above, note that we here have:

{x, px}DB = {x, px} + {x, φ0}{φ0, φ1}−1{φ1px}
+ {x, φ1}{φ1, φ0}−1{φ0px} = 1 ,

as does {x, f(x, y)}DB, so in particular we now have {x, y}DB 6= 0, because via φ1, y is no

longer independent of px and x.

Example 2a

A second reason why the above example is so interesting is that it seems to take on an

entirely different character when the potential V (x, y) vanishes, since the constraints then

become equivalent to

φ0 = py, φ1 = px

and they are now both first class. The solution for the dynamics is given by

x = constant, y = any function of time.

This solution can certainly be well understood, but the problem itself does not fit easily

into the mold people have tried to cut out for it, since the general inclination to interpret

first class constraints as generates of gauge transformations clearly is inappropriate for φ1.

Example 3

The third example is derived from our first, by taking from it the decoupled constrained

degree of freedom, A, alone, and shows that solving and substituting for the Lagrange

multipliers can change the value of the constrained variables. We take for the Lagrangian:

L = Ȧ− 1
2
A2.

The details of the calculation can be done as an exercise, the results of which are easily

summarized. The constraints are found to be

PA − 1 = 0 and A = 0 ,
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and the solution for the Lagrange multiplier is λ = 0. However, if we substitute this back

into the Hamiltonian, the subsequent solution for the constrained variables becomes:

A = c1 and PA = c1T + c2 ,

which is very different, unless we use the original solution to the constraints as

part of the initial data! Frequently, in the treatment of gauge theories for physical

systems, differences like this are often treated as irrelevant, but one may sometimes be

too cavalier in dismissing such changes to the theory, especially if one has quantization in

mind.

Example 4

For the final example, I refer again to the original example of electromagnetism. It is clear

there that taking the additional constraints (gauge fixing conditions), A0 = 0 and A = 0,

gives us a situation with entirely second class constraints, and completely fixes the gauge.

On the other hand the condition ∂µA
µ = 0 does not: it is not enough conditions, and is

insensitive to the change Aµ → Aµ + ∂µφ, for any φ which satisfies ∇2φ = 0.
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