PHY 6646 - Quantum Mechanics II - Spring 2022 Homework set \# 8, due March 2

1. A particle of mass μ moves in a one-dimensional harmonic oscillator potential $V(x)=\frac{1}{2} \mu \omega^{2} x^{2}$. Allowing for relativistic effects, the kinetic energy is $T=E-\mu c^{2}=\sqrt{\mu^{2} c^{4}+p^{2} c^{2}}-\mu c^{2} \simeq \frac{p^{2}}{2 \mu}-\frac{p^{4}}{8 \mu^{3} c^{2}}$. Treating the p^{4} term as a perturbation, calculate the first order shift in the ground state energy.
2. Consider a particle of mass μ in the central force potential

$$
\begin{align*}
V(r) & =-\frac{e^{2}}{r} & & \text { for } 0<r<R \\
& =-\frac{e^{2}}{r} \exp (-\lambda(r-R)) & & \text { for } R<r<\infty \tag{0.1}
\end{align*}
$$

This potential differs from the Coulomb potential only in the region $r>R$, where the Coulomb force is screened. The difference becomes negligible when $\lambda \rightarrow 0$. Consider this difference as a perturbation and calculate the first-order correction to the energy of the ground state of the hydrogen atom.
3. Problems 17.2.4, 17.2.5, 17.2.7, 17.2.8, 17.3.1 in Shankar's book.

