PHZ3113-2916(18565) - Intro Theoret Physics

Instructor: Prof. Yuxuan Wang (Office: 2116 NPB, Email: yuxuan.wang_at_ufl.edu)

Objective: Build the mathematical foundations for introductory theoretical physics, including classical mechanics, electrodynamics as well as quantum mechanics.

On inclusion and diversity: Physics is practiced and advanced by a scientific community of individuals with diverse backgrounds and identities and is open and welcoming to everyone. The instructional team recognizes the value in diversity, equity and inclusion in all aspects of this course. This includes, but is not limited to differences in race, ethnicity, gender identity, gender expression, sexual orientation, age, socioeconomic status, religion and disability. Students may have opportunities to work together in this course. We expect respectful student collaborations such as attentive listening and responding to the contributions of all teammates.

Physics, like all human endeavors, is something that is learned. Our aim is to foster an atmosphere of learning that is based on inclusion, transparency and respect for all participants. We acknowledge the different needs and perspectives we bring to our common learning space and strive to provide everyone with equal access. All students meeting the course prerequisites belong here and are well positioned for success.

Masks and Public Health: It is expected that all of us will be wearing masks during class meetings. During in-person office hours, all of us will be required to wear a mask. All participants are strongly encouraged to get fully vaccinated to protect each other.

Textbook & Lecture notes:

The main lecture content we will use are the lecture notes

specifically developed for this course at UF. They are uploaded under the Files tab.

Recommended: *Mathematical Methods for Physics and Engineering*, by K.F. Riley, M.P. Hobson and S.J. Bence, 3rd Ed., Cambridge University Press (2006).

Other good reference books:

(1) *Mathematical Methods for Physicists*, by G.B. Arfken and H.J. Weber, 5th Ed., Harcourt/Academic Press (2001).

(2) *Mathematical Methods in the Physical Sciences*, by M.L Boas, 3nd Ed., Wiley (2005).

Class Meet at Mondays, Wednesdays, and Fridays Period 6 12:50 to 1:40

Office hours: Tuesdays and Thursdays from 12:50 to 1:40 online. Additional in-person office hours to be announced.

Grading policy: Homework and final exam.

There will be daily homework assignments, due at the beginning of the next lecture. (For medical or other excused absences, see me or send email for approval to submit late.) There will also be three closed-book exams. The total grade will derive 1/3 from homework and 2/3 from the three exams. The weight of each exam will be adjusted according to their difficulty levels.

Grades are assigned to according to the following.

А	90-100	A-	85-90
B+	80-84	В	70-79
B-	65-69	C+	60-64
С	50-59	C-	45-49
D+	40-44	D	35-39
D-	30-34	E	<30

Syllabus:

Week of Aug 23	Overview, Euler-Lagrange equations
Week of Aug 29	No Class

Week of Sep 8	Classical field theory, Lagrange multiplier method, Hamilton's Equations			
Week of Sep 20	Vector and Vector fields, Vector products with Levi-Civita tensor			
Week of Sep 27	Curvilinear coordinates, gradient, divergence, curl, delta function			
Week of Oct 4	Electrodynamics, Review for Exam 1			
Oct 8	Exam 1			
Week of Oct 11	Matrices, Similarity transform, Matrix diagonalization			
Week of Oct 18	Normal modes; Complex variables; Application of complex numbers			
Week of Oct 25	Complex functions; Conformality; Residue theorem			
Week of Nov 1	More fun with complex integrals; Linear vector space; Primer to quantum mechanics			
Week of Nov 8	Quantum mechanics of harmonic oscillators; Fourier series			
Week of Nov 15	Review; Exam 2; Fourier transform			
Nov 22	Phonons			
Week of Nov 29	Photons; Ordinary Differential Equations; Partial Differential Equations			
Dec 6	Green's function method			
Dec 8	Final Review			
Dec 15	Final exam			
ast updated: 8/17/2021				

Last updated: 8/17/2021