Sep 17: Volume Element, Differences between Connection and Tensor, Parallel Transport

September 21, 2018

1 Volume

We can write:

$$
\begin{equation*}
d^{n} x \rightarrow d x^{0} \wedge . . \wedge d x^{n-1} \tag{1}
\end{equation*}
$$

So that the volume element can be defined as:

$$
\begin{equation*}
d V=\sqrt{-g} d^{n} x=d V^{\prime}=\sqrt{-g^{\prime}} d^{n} x^{\prime} \tag{2}
\end{equation*}
$$

Above, the $\sqrt{-g}$ takes the "role" of the \wedge 's in (1). We define the volume element as an n -form by

$$
\begin{equation*}
\epsilon=\epsilon_{\mu_{1} \ldots \mu_{n}} d x^{\mu_{1}} \otimes \ldots \otimes d x^{\mu_{n}}=\frac{1}{n!} \tilde{\epsilon}_{\mu_{1} \ldots \mu_{n}} d x^{\mu^{\prime}} \wedge \ldots \wedge d x^{\mu_{n}} \tag{3}
\end{equation*}
$$

Where above the \otimes means tensor product. We provide a proof of how the dV changes to dV^{\prime}, but it uses the fact that:

$$
\begin{equation*}
d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{n}}=\left|\frac{\partial x^{\mu}}{\partial x^{n \prime}}\right| d x^{\mu_{1}^{\prime}} \wedge \ldots \wedge d x^{\mu_{n}^{\prime}} \tag{4}
\end{equation*}
$$

and the fact that,

$$
\begin{equation*}
\sqrt{-g}\left|\frac{\partial x^{\mu}}{\partial x^{n^{\prime}}}\right|=\sqrt{-g^{\prime}} \tag{5}
\end{equation*}
$$

2 Curvature

It is important to note that the Christoffel symbol Γ is NOT a tensor, for the simple reason that it does not transform like a tensor. Only special combinations of the Christoffel Symbols yield a tensor object. So we call the Christoffel symbols connections.

Theorem if $\exists \mathrm{C}_{\mu \sigma}^{\nu}$ such that $\partial_{\mu} V^{\nu}+C_{\mu \sigma}^{\nu} V^{\sigma}$ transforms as a tensor (i.e. $\left.\nabla_{\mu} V^{\nu}\right)$ then $C_{\mu \sigma}^{\nu}$ is a connection.

To make this clear, a tensor transforms like:

$$
\begin{equation*}
\partial_{\mu^{\prime}} V^{\nu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\mu \prime}} \frac{\partial x^{\nu \prime}}{\partial x^{\nu}} \partial_{\mu} V^{\nu}+\frac{\partial x^{\mu}}{\partial x^{\mu \prime}} \frac{\partial x^{\sigma}}{\partial x^{\sigma \prime}} \frac{\partial^{2} x^{\nu \prime}}{\partial x^{\nu} \partial x^{\sigma}} V^{\sigma \prime} \tag{6}
\end{equation*}
$$

but a connection transforms like this:

$$
\begin{equation*}
C_{\mu^{\prime} \sigma^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\nu \prime}}{\partial x^{\nu}} \frac{\partial x^{\mu}}{\partial x^{\mu \prime}} \frac{\partial x^{\sigma}}{\partial x^{\sigma \prime}} C_{\mu \sigma}^{\nu}+\frac{d^{2} x^{\nu \prime}}{\partial x^{\mu} \partial x^{\sigma}} \frac{\partial x^{\mu}}{\partial x^{\mu \prime}} \frac{\partial x^{\sigma}}{\partial x^{\sigma \prime}} \tag{7}
\end{equation*}
$$

which shows these objects transform in different ways.
We mentioned we can define a tensor via a special combination of these connections. For example, for two connections $C_{\mu \sigma}^{\nu}$ and $C_{\mu \sigma}^{\nu}$ we can define a tensor $S_{\mu \sigma}^{\nu}$ as: $S_{\mu \sigma}^{\nu}=C_{\mu \sigma}^{\nu}-\tilde{C}_{\mu \sigma}^{\nu}$. This object on the left hand side is a tensor, even though the individual objects on the right hand side are connections. An example would be if C and \tilde{C} where the christoffel symbols evaluated at x^{μ}
and $x^{\mu}+\delta x^{\mu}$ respectively. This leads us to conclude that the object, $d\left(\Gamma_{\mu \sigma}^{\nu}\right)=$ $\Lambda_{\mu \sigma \tau}^{\nu} d x^{\tau}$ may be treated as a tensor.

For example, the Riemann Curvature tensor looks like:

$$
\begin{equation*}
R_{\sigma \mu \nu}^{\rho}=\partial_{\mu} \Gamma_{\nu \sigma}^{\rho}-\partial_{\nu} \Gamma_{\mu \sigma}^{\rho}+\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \sigma}^{\lambda}-\Gamma_{\nu \lambda}^{\rho} \Gamma_{\mu \sigma}^{\lambda} \tag{8}
\end{equation*}
$$

The objects on the right hand side are not by themselves tensors, the special combination written above makes the left hand side a, anti-symmetric in ν, tensor. That is, the whole thing behaves as a tensor. For a general $C_{\nu \sigma}^{\mu}, \nabla_{\mu} g_{\tau \sigma} \neq$ 0 . Also, we can only act the covariant derivative ∇_{τ} on tensors, so something like $\nabla_{\tau} \Gamma$ is nonsense.

We also define a torsion tensor, although of so far little to no observational evidence, as $T_{\mu \sigma}^{\nu}=C_{\mu \sigma}^{\nu}-C_{\sigma \mu}^{\nu}$. In order for us to define the Christoffel symbols as "metric compatible", we must require the following conditions:

$$
\begin{gather*}
i) T_{\nu \sigma}^{\mu}=0 \tag{9}\\
\text { ii) } \nabla_{\mu} g_{\tau \sigma}=0 \quad \forall \mu, \sigma, \tau \tag{10}
\end{gather*}
$$

3 Parallel Transport

Vectors don't live in the Manifold M, they live in the tangent space at a point P on M . And so we define parallel transport as, for a vector V^{μ} along a curve $\frac{d}{d \lambda}, \frac{D}{d \lambda}\left(V^{\mu}\right)=0$. So the closest we can get, to having this vector not change is:

$$
\begin{equation*}
\frac{d x^{\nu}}{d \lambda} \nabla_{\nu} V^{\mu}=0 \tag{11}
\end{equation*}
$$

For example, the usual acceleration: $a^{\mu}=\frac{d}{d \tau} V^{\mu}=\frac{d x^{\nu}}{d \tau} \nabla_{\nu} V^{\mu}$
Not every tensor can be parallely transported, only those that satisfy the parallel transport equation above. However if $\nabla_{\sigma} g_{\mu \nu}=0$, then we can say that the metric tensor can be parallely transported along any curve.

