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Geodesics of Schwarzschild

In the spherical coordinates, the Schwarzschild metric can be written as:

ds2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dΩ2 (1)

where dΩ2 is the metric on a unit two-sphere:

dΩ2 = dθ2 + sin2 θdφ2 (2)

We want to calculate the geodesics for this metric using the principle of variation or the Lagrangian approach. We can
define the Lagrangian as:

L =
1

2
mgµν

dxµ

dλ

dxν

dλ
(3)

where λ is a parameter, not necessarily the proper time τ . Therefore, using Eq.1, we get,

L =
1

2
m

[
−
(

1− 2GM

rc2

)
c2ṫ2 + ṙ2

(
1− 2GM

rc2

)−1

+ r2θ̇2 + r2 sin2 θφ̇2

]
(4)

where the derivative “·” indicates total derivative with respect to our parameter λ. For this Lagrangian, the conjugate
momenta are:

pt =
∂L

∂ṫ
= −mc2

(
1− 2GM

rc2

)
ṫ = −E (a constant) (5)

pφ =
∂L

∂φ̇
= mr2 sin2 θφ̇ = Lz (a constant) (6)

pr =
∂L

∂ṙ
= mṙ

(
1− 2GM

rc2

)−1

(7)

pθ =
∂L

∂θ̇
= mr2θ̇ (8)

Please note that the constancy in Eqs.5 and 6 is implied by the fact that the coordinates (t, φ) are cyclic. One additional
thing we need is the following relation:

pµpµ = −m2c2

or, pµpνg
µν = −m2c2

or, − p2t
c2

(
1− 2GM

rc2

)−1

+

(
1− 2GM

rc2

)
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

)
= −m2c2

(9)

Because the problem is spherical symmetric, to simplify our calculation we choose frame such that the orbit lies on the
equitorial plane so that θ̇ = 0 and, therefore, Lz gives the total angular moementum, L, which is the term in the last
bracket of LHS in the above equation. Therefore, using Eqs.(5,6) we have,

−E
2

c2

(
1− 2GM

rc2

)−1

+

(
1− 2GM

rc2

)
p2r +

L2

r2
= −m2c2 (10)

We can solve this equation for pr and using Eqn.(7), we can solve for r(λ), which is equivalent to solving equation of
geodesic. However, solving the equation

−c2ṫ2
(

1− 2GM

rc2

)
+ r2φ̇2 = 0

1



and finding φ(t) is not equivalent to solving a geodesic equation.
Now, using Eq.(7) in Eq. (10) gives us the following equation,(

dr

dλ

)2

=
E2

m2c2
− 1

m2

(
1− 2GM

rc2

)(
m2c2 +

L2

r2

)
=

(
E2

m2c2
− c2

)
+

(
2GM

r
− L2

m2r2

)
+

(
2GML2

m2c2r3

) (11)

If we compare Eq.(11) with analogous Newtonian Equation, we see that the term in the first bracket can be replaced
by Newtonian kinetic energy in the Newtonian limit, the second term is a Newtonian term and the final last term is
actually a General relativistic effect.
Now, in what follows, we will take:

c = 1;
E

m
= Ẽ;

L

m
= L̃

so that Eq.(11) can be written as

ṙ2 = Ẽ2 − Ṽ 2

where, Ṽ 2 =

(
1− 2GM

r

)(
1 +

L̃2

r2

)
(12)

which has been taken in analogous to classical Newtonian theory.

Figure 1: An equivalent one-dimensional effective potential for inverse square force law in classical Newtonian mechanics.
Ref. Classical Mechanics by Goldstein et. al.

In such classical consideration, we can either have an orbit or scattering. For example, in the above figure, E1 represents
a scattering situation and E3 represents an orbiting situation. If the particle is unbounded, the path are parabolic
or hyperbolic and, the bounded orbits are either circles or ellipses. Also, there will be no circular orbits for massless
particles. A similar consideration in General relativity for a massive particle would look like:
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Figure 2: Effective Potential in GR, where L is angular momentum per unit mass and in units where GM = 1. Picture
Credit: Lecture notes in GR by Sean Carroll.

At sufficiently large r, the two theories have similar predictions, but for sufficently small r, the situation in GR is
different. For example as r → 0, the potential goes to −∞ instead of ∞ as in Newtonian case. Therefore, a particle
with sufficiently large energy (say E1, consider a straight line in Figure(2) with this energy E1 above all the curves
there), may be absorbed by the blackhole, which is in contrast to the result obtained in classical analysis. Another
such non-classical feature is that at r = 2GM (with c=1), the potential is always zero and inside this radius, there is a
blackhole. I think rest of the discussion will be easier if we consider a particular value of L, which we do in Figure(3).

If a particle comes from infinity and has an energy corresponding to point G in the Fig(3), it is a case of scattering.
Possibility of circular orbits occur at the maxima or minima , which is point A and B in Fig(3). Obviously, point A
corresponds to an unstable orbit. Firstly, we will consider circular orbits for a massive particle a bit more quantitatively
here. There will be two requirements for circular orbits:

dr

dλ
= 0 =⇒ Ṽ 2 = Ẽ2 (13)

d2r

dλ2
= 0 (14)
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Figure 3: Typical effective potential for a massive particle of fixed specific angular momentum in the Schwarzschild
metric. G = 1 Ref. A first course in GR by Schutz

Please note that the first condition is true for all turning points and is, therefore, not unique. Differentiating Eq.(12)
with respect to λ and using the second of the above mentioned conditions would give us,

2GMr2 − 2L̃2r + 6GML̃2 = 0 (15)

which is quadratic in r and therefore,

r =
L̃2 ±

√
L̃4 − 12G2M2L̃2

2GM
(16)

It is evident from the above equation that for L̃2 > 12G2M2, there are two values of r, for L̃2 = 12G2M2, one value of
r and if L̃2 < 12G2M2, no such r exists. In the limit L̃→∞ Eq.(16) becomes,

r =
L̃2 ± L̃2

(
1− 6GM/L̃2

)
2GM

=

(
3GM,

L̃2

GM

)
(17)

In this limit, the outer stable orbit goes farther and farther, and the inner unstable orbit goes to 3GM . Also, the
minimum value of r for stable circular orbits, with L̃2 = 12G2M2, is r = 6GM . Therefore, it is evident that, for
3GM < r < 6GM , the circular orbits are unstable and for r > 6GM , Schwarzschild metric has stable circular orbits.
Beside circular bound orbits, there can also be bounded non-circular orbits, which oscillate around stable circular radius.
For a massless particle, the equation analogous to Eq.(12) would be:

ṙ2 = E2 − V 2

with, V 2 =

(
1− 2GM

r

)
L2

r2
(18)

The figures analogous to Fig. (2,3) for massless particles are Figures (4,5).
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Figure 4: Typical effective potential for a massless particle of fixed specific angular momentum in the Schwarzschild
metric. G = 1 Ref. A first course in GR by Schutz

Figure 5: Effective Potential in GR, where L is angular momentum per unit mass and in units where GM = 1. Picture
Credit: Lecture notes in GR by Sean Carroll.

Analogous calculation for massless particles will show that a massless particle will not have corresponding point B (see
Figure(4)) so there can be no stable circular orbits for them. For them, the unstable circular orbit will always be at
r = 3GM , which is the point of maxima in the potential (see Figure(5)). So, massless particles can move in a circular
orbit forever with this radius, independent of L, but even a slight perturbation will make it go either to r =∞ or r = 0.
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