PHZ 6607, Special and General Relativity I
Class Number 21787, Fall 2018, Homework 2
Due at the start of class on Friday, October 12.

Answer all questions. Please write neatly and include your name on the front page of your

answers. To gain mazximum credit you should explain your reasoning and show all working.

™

1. This question concerns a measure of curvature known

as the Gaussian Curvature.

a) For a convex, n-sided polygon on a flat two di-
mensional plane, what is the sum of all the ex-

terior angles? Subtract this total from 27. The |.

result tells you something about the curvature

of the 2-plane.

For a triangle, the interior and exterior angles add to 3,

and the interior angles add to 7, so the difference is 2.

For a square, The interior and exterior angles add to 47, and the interior angles add to 2,
so the difference is again 2w. For an n-sided polygon, the result is always the same: 27.

Subtracting this from 27 we get 0. Any other result would have indicated curvature.
b) Find the area, Ag, of the spherical cap, C, shown in the diagram.

The area if the spherical cap is given by
2 O
Ao = 7“2/ / sin 0dfd¢ = 2% (1 — cos ©) = 4nr? sin®(0/2).
0 0

Note: this has the sensible limit 7(r0)% as © — 0, and 47712 as © — 7.

c) On the parallel of latitude which bounds C|, parallel transport the initial vector
V = (VOG, VO¢) from ¢ = 0 to ¢ = 27, using ¢ as the parameter along the (non-

geodesic) curve.
From class notes (9/19/18, where we have replaced 6y by ©), we have:

V9(¢>) = Voo cos(¢ cos ©) + sin @VO¢ sin(¢ cos 0),
by _ 1P L e
V?(¢) =V cos(¢cosO) sin@vo sin(¢ cos ©).

Substituting ¢ = 27 we obtain:
vl (2r) = V09 cos(2m cos ©) + sin @VO¢ sin(2m cos ©),

Ve (2r) = VO¢ cos(2m cos ©) — Voo sin(2m cos ©).

sin ©



d) Show that the magnitude of the vector, V, has not changed, and that the vector

has rotated through an angle A = 27 cos © with respect to its original direction.
For [V(¢)|? = V#V"g,, we obtain 2 ((V9)2 + sin? 90(V¢)2>, independent of ¢. The angle
of rotation is given by:

V(0) - V(2n)
[V(0)] x |V (2m)]

A = arccos ( ) = arccos(cos(2m cos ©)) = 27 cos ©.

Thus, we have 27 — A = 27(1 — cos ©) = 4w sin®(0/2).
e) Evaluate
(2m — A)
kG = —">
G A )
and show that it is a constant, independent of ©. The quantity, k¢, is known as

the Gaussian Curvature, and is constant for the sphere, as one might expect.

Substituting, we find
47 sin?(©/2) 1
kG = 2 2 = 9
drr=sin®(©/2) r

which is indeed independent of ©.

2. The world line of a particle in flat Minkowski space is

described by the parametric equations:

e (D). av-ewn(l),

in some Lorentz frame, where A is the parameter and a is

a constant. Note: t and x have the same dimension, so you

should use ¢ = 1.

a) Describe the motion and use a 1-plus-1, space-

time diagram to represent it.

The motion is hyperbolic, as shown in the figure (in red), and is given by 22 — 2 = a2.

b) Compute the particle’s four-velocity and acceleration components.

We find:
dt  dA A
e cosh (a) ,
dr  d\ | A .
it sinh (g) , giving
2
VIV g = — (%) = % =1.
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Then
cosh <A) 1 [ sinh <A>
VH = ; , and At == (j\
sinh (5> @ \ cosh (6)
c) Show that A is proper time along the world line and that the acceleration is uniform.

We have dA\/dt =1 from above, so A is equivalent to proper time along the trajectory. Also,

|A| = 1/a is constant and A - 'V = 0, so acceleration is uniform.

d) Interpret a.
From the statement of the problem, [a] = L, and we see |A| = 1/a, so a is the reciprocal of
the acceleration. Note: [A] = L/T? = 1/L (since t has the dimensions of length) as required.
3. Consider Killing’s equation V(Mﬁu) = 0, in flat, 4-dimensional Minkowski space, with
guv = diag(—1,1,1,1).

a) Show, by explicit calculation, that:

=(1,0,0,0),
X* = (0.1,0,0),
Y =(0,0,1,0),
Z* = (0,0,0,1),

each satisfy Killing’s equation in flat space.

Note that T), = (—1,0,0,0), while X,, = (0,1,0,0), Y, = (0,0,1,0), and Z,, = (0,0,0,1),
and that in cartesian coordinates in flat space the covariant derivative (V) is given by the

ordinary partial derivative (0). Now, for V(. T,), we must have one of p or v equal to t,

urv
and the other one can be ¢t or i. Both {u,v} = {t,t} and {u,v} = {t,i} give zero, since the

non-zero component is constant. A similar argument applies for each of X, Y and Z.
b) Show, by explicit calculation, that:
Ly = (0,0, —2,y),
LY = (0, 2,0, —z),
LY = (0, ~y,x,0),
each satisfy Killing’s equation in flat space.

We first compute Ly = (0,0,—2,y), L% = (0,2,0,—x) and Li = (0,—y,x,0). Now, for

VL"), we must have only y and/or z for p and v (because ¢ and x must give zero).

Then VyL*, = 0 = V.L"*,, and V(yLIZ) = OyL", + 0.L%y = 1 -1 = 0, so Killing’s



equation is satisfied. Similarly, for V( MLyV) only z and/or z can contribute for p and v, and
VielY, =0=V_,LY,, while V(xLyZ) =0, LY,+0,LY, = —1+1 = 0 too, so Killing’s equation
is again satisfied. That V( ﬂLz V) = 0 similarly follows by cyclic permutation of the indices.

c) Show, by explicit calculation, that:

B = (x,t,0,0),
BZ = (y707t70)7
B'g = (Z7O7O7t)7

each satisfy Killing’s equation in flat space.

First we must compute B*;, = (-=«,t,0,0), BY, = (-,0,t¢,0) and B*;, = (—2,0,0,t), then
the rest of the computation proceeds exactly in the same way as for angular momentum.
d) Show that:
Legur =V (ubo)
where L is the Lie derivative. First write the Lie derivative in terms of partial

derivatives, and then convert these into covariant derivatives for the final result.

By definition:
ﬁgguu = fTaTg;w + gTuaufT + guTaufT

=0 g — Tr9ov€” — T gucl”
+ grvOu€” + grl6 €7 + 9ur0u€” + gur15,E7
=&"Voguw + 97V & + 9ur Vg™
=Vl + Vil — & (Vugry + Vogur — Veguw)
= Vuév + Vi€
Where in the second equality we have used the symmetry of the connection, and in the last

line we have used that the connection is metric compatible.

e) You have just shown that, for each Killing vector, the Lie derivative of the metric

is zero along each Killing vector. What does this tell you?

Thus the metric remains unchanged under Lie transport in the direction of each Killing vector.
In particular the Minkowski metric is unchanged by the action of each of these 10 vectors,

which together generate translations, rotations and boosts.

4. Consider the Lagrangian density for Electromagnetism (in flat, Minkowski space-time):

1
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where F,,, = 0,Ay — 0y A, is the electromagnetic field strength tensor, and is given by:

0 —E —F Iy o B B FE
Fuow=\g, -3 o gl |> &@d Fo=1_p p g p
FEs B2 —-BlY 0 —E3 By —B; 0

(note the placement of indices), J# is the current density 4-vector, and A, is the 4-vector

potential.
a) Find the Euler-Lagrange equations of motion for A,.

First note that:
FM]/F'LLV — (auAy_ayAlu)FNV — BMAVF'LLV_BUAMFNV — 6MAI/FMV+ayAuFV'u — 26MAI/FNV.

Then we find:
8uF/“/ +7¥ =0,

where, for v =t we have

~0;E"+p=0,

(in which we have used J? = p), and for v = i we have

E' - €ijkajBk + Ji=0.

b) How many equations does this give you? What other equations do you need to

add to obtain all of Maxwell’s equations? Where do they come from?

We have four Maxwell’s equations, and are missing the four without source terms, so we need

to find them. They come from:
a'quT + a‘quT + a,lLFVT - O = éuupgaprg - O,

which follows trivially from the definition of F},;, in terms of A;,, and the commutativity of

partial derivatives. The p =t equation gives:

while the y = 7 equation gives:
SZ]kajEk + B! =0.

c) Express £ = €uvpo FMY FP? in terms of E and B.
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First note that there are 4! = 24 terms in this expression, but that:
~ 17,72 ~ 1132 ~ 10 22 ~ 1 2
é0123FO F® = 0130 F N 32 = &3 FIOF? = &3 F1OFP
~ 23 701 ~ 32 701 ~ 23 010 ~ 32 1710
= €301 L7 F = €3201 F T = €p310F T FTT = €310 F
so there are really only three independent terms. These can be written as:

0193 F N 2 4 E)931 FO2F3L 4 60319 F " F12 = BBy + E2By + E°Bs = E'B; = E - B.

d) Show that including £’ as an addition to the Lagrangian density used above does

not affect the result for Maxwell’s equations.

Varying this term with respect to A, in the action would give us 4 €779, F,, and we have

already used that this equals zero in part b) above. Let’s see how it really comes about:
4¢Py, (OpAU — GgAp) =4e"rP79,0,A; —4"P°0,0,A)
=4e"r70,0,)A; —4"9P0,0,A,
=4e"r70,0,As +4P70,0,A5
=8e'r70,0,As,
which always vanishes because 0,0,A, is symmetric in (v, p) while €77 is antisymmetric.

e) Give a deep reason that could explain why this would be the case?

A term in the action which contributes nothing to the action must be equivalent to a total

derivative. We can see how this comes about here:

where the first term is a total derivative, and the second term vanishes by symmetry.
Note: 0 and € are deliberately used here, rather that V and e. Why?

5. Let K* be a Killing vector (i.e., VK, + VK, = 0 is satisfied).
symmetries of the Riemann tensor, show that V,V,K? = R? oK.

We commute the derivatives and use Killing’s equation several times, and then use symmetries

of the Riemann tensor:
V,UVO'Kp — VO'VI,LKp "1‘ RpV/LO'Kl/ — _VO'VpK/,L + RpV/,LO'Kl/

= —V,VoK, — R, %pKs + R, 0 Ky
=V, VuKs — R//spKy + R, o Ky
= VuVpKo + Ry puKy — R 6p Ky + Ry o Ky
= -VuVeKp+ Ry puKy — R 6p Ky + R, 0 Ky
= —VuVoK,—2R,/5)K,
= -V, VoK, +2Rpu" Ky,
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which gives the desired result, V,V,;K? = R’ oK, after some further index juggling.

b) By contraction to obtain V,V,KH" = Rs, K", one further differentiation, and
additional manipulation, show that K AV AR =0, i.e., that the Ricci scalar does

not change along a Killing vector field.

Contraction indeed gives V Vs K m—= RV oK V' = Ry, KY. Then we take one extra derivative

of this equation:
1 1
VUVHVUK'U - VURO'VKV + RUVVUKV - 5V}/RKV - iKVVyR,

where the second term vanishes since Ry, is symmetric and V? K is antisymmetric in (o, v).
Alternatively, by commuting the outer derivatives and using Killing’s equation, we find:
VoV, VoKt =V, V'V K + RV, VoK + R,V KF

=V, V°VsK! - R,°V,K" + R",V, KV

=V, VoVsK#, since the Ricci terms vanish by symmetry

= -V, V°VI'K,

=-VoV, VKl =0,
(where, in the last line we used o > and changed the position of all indices — up and down),

where the final result holds since the last line and the left hand side are equal and opposite.
Thus, K¥V,R = 0 as required.



