Special and General Relativity, Fall 2018

Yang Yang and Sanjib Katuwal

September 24, 2018

1 Einstein Tensor

Bianci identity:

$$
\begin{equation*}
\nabla_{\mu} R_{\nu \rho \sigma \tau}+\nabla_{\nu} R_{\rho \mu \sigma \tau}+\nabla_{\rho} R_{\mu \nu \sigma \tau}=0 \tag{1}
\end{equation*}
$$

if we multiply the bianci identity above by metric matrix, then we can find:

$$
\begin{align*}
& g^{\mu \sigma} g^{\rho \tau}\left(\nabla_{\mu} R_{\nu \rho \sigma \tau}+\nabla_{\nu} R_{\rho \mu \sigma \tau}+\nabla_{\rho} R_{\mu \nu \sigma \tau}\right)=0 \tag{2}\\
& \Rightarrow \nabla^{\mu} R_{\mu \nu}-\nabla_{\nu} R+\nabla^{\mu} R_{\mu \nu}=0
\end{align*}
$$

Where R is the Ricii scalar.
Then we can define the Einstein Tensor $G_{\mu \nu}$:

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-1 / 2 g_{\mu \nu} R \tag{3}
\end{equation*}
$$

Use E-H action, we can derive:

$$
\left\{\begin{array}{l}
\frac{\delta S_{g}}{\delta g_{\mu \nu}} \Rightarrow \nabla_{\mu} G_{\nu}^{\mu}=0 \tag{4}\\
\frac{\delta S_{m}}{\delta g_{\mu \nu}} \Rightarrow \frac{\delta \pi G}{c^{p}} \nabla_{\mu} T_{\nu}^{\mu}=0
\end{array}\right.
$$

where T_{ν}^{μ} is the energy-momentum tensor.

2 Killing Vector

Let's consider the motion in space-time:
The action is $I=1 / 2 m g_{\mu \nu} \dot{x^{\mu}} \dot{x^{\nu}}$, and the momentums are $P_{\mu}=m g_{\mu \nu} \dot{x^{\nu}}$.

$$
\begin{equation*}
\frac{d P_{\mu}}{d \tau}=1 / 2 m \partial_{\mu} g_{\rho \sigma} \dot{x^{\rho}} \dot{x^{\sigma}} \tag{5}
\end{equation*}
$$

This equation is another form of geodesic equation, if $\partial_{\mu} g_{\rho \sigma}=0$, then P_{μ} is constant. In sphere coordinates, since the metric matrix doesn't depend on ϕ and t, we can conclude that $P_{t}, P_{\phi}=L_{z}$ are conserved.

If the metric matrix is independent of some coordinate μ^{*}, the corresponding momentum $P_{\mu^{*}}$ is conserved. $\mathbb{P}=P_{\mu *} e^{\mu^{*}}$, here we don't sum the index over,in general $P_{\mu^{*}}$ is in some particular direction K^{μ}, so $P_{\mu^{*}}=K^{\mu} P_{\mu}=K_{\mu} P^{\mu}$. This $P_{\mu} *$ is a scalar. Then, we can define the killing vectors:

$$
\begin{equation*}
\mathbb{K}=K^{\mu} \partial_{\mu} \tag{6}
\end{equation*}
$$

If the quantity $P_{\mu *}$ is a constant along the path of motion, we have:

$$
\begin{equation*}
\frac{d P_{\mu^{*}}}{d \tau}=0 \leftrightarrow P^{\mu} \nabla_{\mu}\left(P^{\nu} K_{\nu}\right)=0 \tag{7}
\end{equation*}
$$

Expanding the expression above, we have:

$$
\begin{align*}
P^{\mu} \nabla_{\mu}\left(P^{\nu} K_{\nu}\right) & =K_{\nu} P^{\mu} \nabla_{\mu} P^{\nu}+P^{\mu} P^{\nu} \nabla_{\mu} K_{\nu} \\
& =P^{\mu} P^{\nu} \nabla_{\mu} K_{\nu} \tag{8}\\
& =P^{\mu} P^{\nu} \nabla_{(\mu} K_{\nu)}
\end{align*}
$$

In the second line above, we use the geodesic equation $P^{\mu} \nabla_{\mu} P^{\nu}=0$, and in the third line $\nabla_{(\mu} K_{\nu)}$ means the symmetric part of $\nabla_{\mu} K_{\nu}$, since $P^{\mu} P^{\nu}$ is a symmetric matrix, only the symmetric part of $\nabla_{\mu} K_{\nu}$ will contribute. If $\nabla_{(\mu} K_{\nu)}=0$, then $K_{\nu} P^{\nu}$ is conserved along the trajectory.

Thus, we find the Killing's equation:

$$
\begin{equation*}
\nabla_{(\mu} K_{\nu)}=0 \tag{9}
\end{equation*}
$$

The solution to this equation K_{ν} is called killing's vector.
In 3-D flat space, we have 6 conserved momentum $P_{x}, P_{y}, P_{z}, L_{x}, L_{y}, L_{Z}$, thus we should have 6 killing's vectors:

$$
\left\{\begin{align*}
X^{\mu} & =(1,0,0) \tag{10}\\
Y^{\mu} & =(0,1,0) \\
Z^{\mu} & =(0,0,1) \\
R^{\mu} & =(-y, x, 0) \\
S^{\mu} & =(z, 0,-x) \\
T^{\mu} & =(0,-z, y)
\end{align*}\right.
$$

In 4-D space, the maximum killing vectors are 10. In Minkowski space, $d s^{2}=$ $-c^{2} d t^{2}+d x^{2}+d y^{2}+d z^{2}$, it has 10 killing vectors, it has 4 translation killing vectors, 3 rotation killing vectors and 3 boost killing vectors B_{x}, B_{y}, B_{z} :

$$
\begin{equation*}
B_{x}=x \partial_{t}+t \partial_{x}, e t c . \tag{11}
\end{equation*}
$$

Flat Minkowski space is Maximally symmetric whose Ricci scalar is 0 .
In n-D, there exits maximally symmetric spaces with $R>0$, const; $R=0 ; R<$ 0 , const.. The space with constant positive R is n -sphere, and is called the desitter space. The space with negative constant curvature is the hyperbolic space or the anti de-sitter space.

3 geodesic separation

Let's consider 2-D first.In flat 2-D space, suppose $\gamma_{s}(t)$ is a one-parameter family of geodesic,for each $s \in \mathbb{R}, \gamma_{s}$ is a geodesic parameterized by the affine parameter t . Let γ_{1}, γ_{2} to be 2 geodesic, then the geodesic separation stays the same.

Now, let's consider non-flat space. We are looking at the separation of two geodesic. As we go up with the parameter t, we have the same parameter t in both geodesic, then the geodesic separation is not a constant. We can derive a equation for geodesic separation.

