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Exponential Map

Consider a set

E = {(p, xp)|γ(t; p, xp), γ ∈ [0, 1]}

where by definition, E is the tangent vector to the manifold at point p. Geodesics are used to
create exponential maps, which are used to map the tangent space Tp of a point p to a region of
the manifold that contains p. The definition of an exponential map is

exp : E →M, (p, xp) 7→ expp(xp) = γ(1; p, xp) for γ ∈ (0, 1)

For any p ∈ M and any vector xp in E , there exists a unique geodesic γ(t) = γ(t; p, xp) in M
such that

γ(0) = p, γ̇(0) = xp.

Recall that a linear parameterization of a geodesic is again a geodesic.

(p, xp) ∈ E → (p, λxp) ∈ E

xp is a place in the tangent space TpM and for each point in the tangent space, there is a vector
that points from the origin to that point. So if we are given xp, there is a curve γ in M that depends
smoothly on p and xp.

Characterizing Curvature

Figure 1: Translation from point p via two different similar paths leads to the same endpoint q in
flat space.

Consider traveling from point p to point q in flat space via two different but similar paths as
shown in Figure . It can easily be seen that the two paths will end at the same point q in flat space.
This is also true that parallel transportation of a vector via these two different paths will return
the same vector at the point q. Therefore, parallel transport of Vp → Vq is independent of path in
flat space.

On a sphere, however, if the path is long enough then this same procedure will cause path 1 and
path 2 to end at two different points q1 and q2 respectively where q1 6= q2. This works if the path
is long enough but what about the case of motion in the neighborhood of p? We can imagine an
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Figure 2: Translation from point p via two different similar paths leads to the same endpoint q in
flat space.

alternative measure in which a grid is built out of parameter intervals s and t along which we will
end up at the same point. We will not, however, end up with the same vector. This provides some
measure of the curvature. We can measure the changes in the vector along these paths.

[ ~X, ~Y ]~V → δV σ ∼ (∇µ∇νV
σ −∇ν∇µV

σ)XµY ν

The commutator of two covariant derivatives measures the difference between parallel trans-
porting the vector first one way and then the other, versus the opposite ordering. Thus

(∇µ∇νV
σ −∇ν∇µV

σ) = Rσ
ρµνV

ρ

provides a proper measure of the curvature (disregarding any torsion).
The Riemann tensor is defined to be

Rσ
ρµν = ∂µΓσνρ − ∂νΓσµρ + ΓσµλΓ

λ
νλ − ΓσνλΓ

λ
µρ

and it is antisymmetric in the first two indices and the last two indices

Rσ
ρµν = −Rσ

ρνµ

Rµνρσ = −Rνµρσ

Rµνρσ = −Rµνσρ

and it is symmetric upon exchange of the pairs

Rµνρσ = Rρσµν .

The sum of cyclic permutations of the last three indices vanishes

Rµνρσ +Rµσνρ +Rµρσν = 0

Example

Consider a sphere of radius a with metric

ds2 = a2dθ2 + a2 sin2 θdφ2.

Two Christoffel symbols that we wrote last time
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Γθφφ = − sin θ cos θ

Γφθφ = Γφφθ =
cos θ

sin θ

A promising component of the Riemann tensor is

Rθφθφ = gθλR
λ
φθφ = gθθR

θ
φθφ = a2 sin2 θ

We can compute the Ricci tensor via

Rµν = gαβRαµβν

giving us

Rθθ = gφφRθφθφ = 1

Rθφ = Rφθ = 0

Rφφ = gθθRθφθφ = sin2 θ

We can easily compute the Ricci scalar, which completely characterizes the curvature

R = gθθRθθ + gφφRφφ =
2

a2

From this computation we can see two points:

1. R > 0 for a sphere.

2. R α 1/a2 so the Ricci scalar has units [R] = L−2

Differentiate ∇τRµνρσ to obtain three derivatives of the metric. The derivatives share the same
property where the sum of the cyclic permutations vanishes

∇τRµνρσ +∇νRτµρσ +∇µRντρσ = 0.

Due to the antisymmetric nature of the Riemann tensor, we can write this as

∇[λRµν]ρσ = 0

which is known as the Bianchi identity and is closely related to the Jacobi identity.
Next time we will discuss the Einstein tensor

Gµν = Rµν −
1

2
Rgµν

and see that

∇µGµν = 0
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