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1 Directional Derivatives
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1.1 Direction Covariant Derivative
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For some vector U:
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Meaning that:
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1.1.1 Parallel Transport

For all U* in which Eq. 3 is true there exists a V() such that
Urv, V(X)) =0.

This is a parallel transport in which the path is given and we solve to find V¥ (\).
Parallel transport allows you to compare a vector in one tangent plane to a vector
in another. This is done by moving the vector along a curve without changing
it.



1.1.2 Geodesics
A geodesic is a curve along which U* is preserved such that
urv, U =0.

This is a second order differential equation and you would solve for the path. A
geodesic is a length minimizing curve. In a plane this would be a straight line
and on a sphere this is a great circle.
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The equation A — X = aA+b stays the same and rescales the velocity vector:
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Any vector at a point is the initial velocity of a geodesic with some parame-
terization. At any point p there exists a velocity U” in the tangent space TpM
that is U = dz"” /d\ for some A along a geodesic.

1.2 Applying Directional Derivatives

For the case of the sphere the metric is given by:
ds® = R%d6? + R?sin® 0dp?
In which the connection coefficients are:
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For the sphere in Fig. 1:

At A = 0 this gives:
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Figure 1: Looking at this sphere, the blue line is the path we have decided to
take where 6y # 0. The black line is the vector in question that we will be
watching to see how its direction changes as it moves along the path.

A is some parameter along a decided monotonic path. In this case we choose
A = ¢. Since R is fixed we get two equations using Eq. 2 with dz*/d\ = 1 since
we chose z# = ¢ = A:
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These are examples of parallel transport. We will solve these equations to de-

termine how V' changes in ¢ increments.
Plugging in the connection coefficients for 6 = 6:
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Now taking the derivative:
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Solving Eq. 7 we get equations for V? and V¢:
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V¢ = C cos [pcos (0y)] + cos (00) sin [¢ cos (6p)] (9)



Let ¢ = 0 then solving Eqs. 8 and 9 gives A = V09 and C' = V0¢. Taking the
derivative of these equations with respect to A:
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Setting ¢ = A = 0 we can then use Egs. 6 at to determine the other constants.
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The final result then gives an example of a geodesic:

VO (p) = V¥ cos (¢ cosbp) + sin 00V0¢ sin (¢ cos 6p) (10)
V(o) = Vb¢ cos (¢ cosby) — — ! VY sin (¢ cos ) (11)
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Now looking at two cases, one where 6y = 7/2 and the other where 6y = /3.

Case 1:
If 0p = m/2 then sinfy = 1 and cosfy = 0 giving

Vi) =V V() =V
for all ¢

Case 2:
If §p = 7/3 then sinfy = v/3/2 and cosfp = 1/2 giving

V9(¢) = VY cos <;b) + ?Vf sin (¢>

2
V(o) = V0¢ cos (2) + jﬁvb@ sin (?)

For ¢ = 0 we would get the same result as in Case 1, but if ¢ = 27 then we
would get negative of that result. The vector will be in the opposite direction
once it goes around the curve once.

2 Exponential Map

Given a point p and some vector V7 in the tangent space, there exists a geodesic
Yp(A) such that 4;,(0) = p and 4,(0) = V.
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Construct a 1D space where:
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This includes all points and lines along a geodesic. The different points come
from different values for t, V¥ = (1/t)V".

Note: If A\ — ) = t\ where t exists between 0 and 1, then for different ¢ the
endpoints for A’ change.
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Figure 2: This shows the map from the flat tangent space of the manifold (TpM)
to the manifold, defining an “exponential” map.

Looking at Fig. 2 we now have a map from the tangent space of the manifold to
the manifold.
What defines an “exponential” map:

exp, (V) =~(1,p, V)
exp,(tV,) = v(1,p,tV})) (12)

Eq. 12 scales to every point along the curve. There may be restrictions on
how much of the manifold can be mapped using this method.



