Special and General Relativity Notes

Jennica LeClerc, Karolina Garcia

Wednesday, September 19th

1 Directional Derivatives

$$
\begin{equation*}
\frac{d}{d \lambda}=\frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}} \tag{1}
\end{equation*}
$$

1.1 Direction Covariant Derivative

$$
\begin{align*}
\frac{D V^{\mu}}{d \lambda} & =\frac{d x^{\mu}}{d \lambda} \nabla_{\mu} V^{\mu} \\
& =\frac{d x^{\mu}}{d \lambda}\left(\frac{\partial V^{\nu}}{\partial x^{\mu}}+\Gamma_{\mu \sigma}^{\nu} V^{\sigma}\right) \\
& =\frac{d V^{\mu}}{d \lambda}+\Gamma_{\mu \sigma}^{\nu} V^{\sigma} \frac{d x^{\mu}}{d \lambda} \tag{2}
\end{align*}
$$

where

$$
\frac{d x^{\mu}}{d \lambda} \frac{\partial V^{\nu}}{\partial x^{\mu}}=\frac{d V^{\mu}}{d \lambda}
$$

For some vector U :

$$
\frac{D V^{\mu}}{d \lambda}=\frac{d x^{\mu}}{d \lambda} \nabla_{\mu} V^{\mu} \equiv U^{\mu} \nabla_{\mu} V^{\mu}
$$

Meaning that:

$$
\begin{equation*}
\frac{d x^{\mu}}{d \lambda}=U^{\mu} \tag{3}
\end{equation*}
$$

1.1.1 Parallel Transport

For all U^{μ} in which Eq. 3 is true there exists a $V^{\nu}(\lambda)$ such that

$$
U^{\mu} \nabla_{\mu} V^{\nu}(\lambda)=0
$$

This is a parallel transport in which the path is given and we solve to find $V^{\nu}(\lambda)$. Parallel transport allows you to compare a vector in one tangent plane to a vector in another. This is done by moving the vector along a curve without changing it.

1.1.2 Geodesics

A geodesic is a curve along which U^{μ} is preserved such that

$$
U^{\mu} \nabla_{\mu} U^{\nu}=0
$$

This is a second order differential equation and you would solve for the path. A geodesic is a length minimizing curve. In a plane this would be a straight line and on a sphere this is a great circle.

$$
\begin{align*}
\frac{D\left(U^{\mu}\right)}{d \lambda} & =\frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}}\left(\frac{d x^{\nu}}{d \lambda}\right)+\Gamma_{\mu \sigma}^{\nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\sigma}}{d \lambda} \\
& =\frac{d^{2} x^{\nu}}{d \lambda^{2}}+\Gamma_{\mu \sigma}^{\nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\sigma}}{d \lambda}=0 \tag{4}
\end{align*}
$$

The equation $\lambda \rightarrow \lambda^{\prime}=a \lambda+b$ stays the same and rescales the velocity vector:

$$
U^{\mu} \rightarrow U^{\prime \mu}=\frac{1}{a} U^{\mu}
$$

Any vector at a point is the initial velocity of a geodesic with some parameterization. At any point p there exists a velocity U^{ν} in the tangent space $T p M$ that is $U^{\nu}=d x^{\nu} / d \lambda$ for some λ along a geodesic.

1.2 Applying Directional Derivatives

For the case of the sphere the metric is given by:

$$
d s^{2}=R^{2} d \theta^{2}+R^{2} \sin ^{2} \theta d \phi^{2}
$$

In which the connection coefficients are:

$$
\Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta \quad \quad \Gamma_{\phi \theta}^{\phi}=\Gamma_{\theta \phi}^{\phi}=\frac{\cos \theta}{\sin \theta}
$$

For the sphere in Fig. 1:

$$
V^{\nu}(\lambda)=\left(V^{\theta}(\lambda), V^{\phi}(\lambda)\right)
$$

At $\lambda=0$ this gives:

$$
\begin{aligned}
V^{\nu}(0) & =\left(V^{\theta}(0), V^{\phi}(0)\right) \\
& =\left(V_{0}^{\theta}, V_{0}^{\phi}\right)
\end{aligned}
$$

Figure 1: Looking at this sphere, the blue line is the path we have decided to take where $\theta_{0} \neq 0$. The black line is the vector in question that we will be watching to see how its direction changes as it moves along the path.
λ is some parameter along a decided monotonic path. In this case we choose $\lambda=\phi$. Since R is fixed we get two equations using Eq. 2 with $d x^{\mu} / d \lambda=1$ since we chose $x^{\mu}=\phi=\lambda$:

$$
\begin{equation*}
\frac{D V^{\theta}}{d \phi}=\frac{d V^{\theta}}{d \phi}+\Gamma_{\phi \phi}^{\theta} V^{\phi}=0 \quad \frac{D V^{\phi}}{d \phi}=\frac{d V^{\phi}}{d \phi}+\Gamma_{\theta \phi}^{\phi} V^{\theta}=0 \tag{5}
\end{equation*}
$$

These are examples of parallel transport. We will solve these equations to determine how V changes in ϕ increments.

Plugging in the connection coefficients for $\theta=\theta_{0}$:

$$
\begin{equation*}
\frac{d V^{\theta}}{d \lambda}-\sin \theta_{0} \cos \theta_{0} V^{\phi}=0 \quad \frac{d V^{\phi}}{d \lambda}+\frac{\cos \theta_{0}}{\sin \theta_{0}} V^{\theta}=0 \tag{6}
\end{equation*}
$$

Now taking the derivative:

$$
\begin{align*}
\frac{d^{2} V^{\theta}}{d \lambda^{2}}-\sin \theta_{0} \cos \theta_{0} \frac{d V^{\phi}}{d \lambda} & =0 \\
\frac{d^{2} V^{\theta}}{d \lambda^{2}}-\sin \theta_{0} \cos \theta_{0} \frac{\cos \theta_{0}}{\sin \theta_{0}} V^{\theta} & =0 \\
\frac{d^{2} V^{\theta}}{d \lambda^{2}}-\cos ^{2}\left(\theta_{0}\right) V^{\theta} & =0 \tag{7}
\end{align*}
$$

Solving Eq. 7 we get equations for V^{θ} and V^{ϕ} :

$$
\begin{align*}
V^{\theta} & =A \cos \left[\phi \cos \left(\theta_{0}\right)\right]+\frac{B}{\cos \left(\theta_{0}\right)} \sin \left[\phi \cos \left(\theta_{0}\right)\right] \tag{8}\\
V^{\phi} & =C \cos \left[\phi \cos \left(\theta_{0}\right)\right]+\frac{D}{\cos \left(\theta_{0}\right)} \sin \left[\phi \cos \left(\theta_{0}\right)\right] \tag{9}
\end{align*}
$$

Let $\phi=0$ then solving Eqs. 8 and 9 gives $A=V_{0}^{\theta}$ and $C=V_{0}^{\phi}$. Taking the derivative of these equations with respect to λ :

$$
\begin{aligned}
\frac{d V^{\theta}}{d \lambda} & =\cos \theta_{0} A \sin \left(\phi \cos \theta_{0}\right)+B \cos \left(\phi \cos \theta_{0}\right) \\
\frac{d V^{\phi}}{d \lambda} & =\cos \theta_{0} C \sin \left(\phi \cos \theta_{0}\right)+D \cos \left(\phi \cos \theta_{0}\right)
\end{aligned}
$$

Setting $\phi=\lambda=0$ we can then use Eqs. 6 at to determine the other constants.

$$
\begin{aligned}
B & =\left.\frac{d V^{\theta}}{d \lambda}\right|_{\phi=0} & D & =\left.\frac{d V^{\phi}}{d \lambda}\right|_{\phi=0} \\
& =\sin \theta_{0} \cos \theta_{0} V_{0}^{\phi} & & =-\frac{\cos \theta_{0}}{\sin \theta_{0}} V_{0}^{\theta}
\end{aligned}
$$

The final result then gives an example of a geodesic:

$$
\begin{align*}
V^{\theta}(\phi) & =V_{0}^{\theta} \cos \left(\phi \cos \theta_{0}\right)+\sin \theta_{0} V_{0}^{\phi} \sin \left(\phi \cos \theta_{0}\right) \tag{10}\\
V^{\phi}(\phi) & =V_{0}^{\phi} \cos \left(\phi \cos \theta_{0}\right)-\frac{1}{\sin \theta_{0}} V_{0}^{\theta} \sin \left(\phi \cos \theta_{0}\right) \tag{11}
\end{align*}
$$

Now looking at two cases, one where $\theta_{0}=\pi / 2$ and the other where $\theta_{0}=\pi / 3$.

Case 1:

If $\theta_{0}=\pi / 2$ then $\sin \theta_{0}=1$ and $\cos \theta_{0}=0$ giving

$$
V^{\theta}(\phi)=V_{0}^{\theta} \quad V^{\phi}(\phi)=V_{0}^{\phi}
$$

for all ϕ

Case 2:
If $\theta_{0}=\pi / 3$ then $\sin \theta_{0}=\sqrt{3} / 2$ and $\cos \theta_{0}=1 / 2$ giving

$$
\begin{aligned}
V^{\theta}(\phi) & =V_{0}^{\theta} \cos \left(\frac{\phi}{2}\right)+\frac{\sqrt{3}}{2} V_{0}^{\phi} \sin \left(\frac{\phi}{2}\right) \\
V^{\phi}(\phi) & =V_{0}^{\phi} \cos \left(\frac{\phi}{2}\right)+\frac{2}{\sqrt{3}} V_{0}^{\theta} \sin \left(\frac{\phi}{2}\right)
\end{aligned}
$$

For $\phi=0$ we would get the same result as in Case 1 , but if $\phi=2 \pi$ then we would get negative of that result. The vector will be in the opposite direction once it goes around the curve once.

2 Exponential Map

Given a point p and some vector V_{p}^{ν} in the tangent space, there exists a geodesic $\gamma_{p}(\lambda)$ such that $\gamma_{p}(0)=p$ and $\dot{\gamma}_{p}(0)=V_{p}^{\nu}$.

Construct a 1D space where:

$$
E=\left(p, V_{p}^{\nu}, \gamma_{p}(\lambda)=\gamma_{p}\left(\lambda, p, V_{p}^{\nu}\right), \lambda=(0,1)\right)
$$

This includes all points and lines along a geodesic. The different points come from different values for $\mathrm{t}, V^{\prime \nu}=(1 / t) V^{\nu}$.
Note: If $\lambda \rightarrow \lambda^{\prime}=t \lambda$ where t exists between 0 and 1 , then for different t the endpoints for λ^{\prime} change.

Figure 2: This shows the map from the flat tangent space of the manifold (TpM) to the manifold, defining an "exponential" map.

Looking at Fig. 2 we now have a map from the tangent space of the manifold to the manifold.

What defines an "exponential" map:

$$
\begin{align*}
\exp _{p}\left(V_{p}^{\nu}\right) & =\gamma\left(1, p, V_{p}^{\nu}\right) \\
\exp _{p}\left(t V_{p}^{\nu}\right) & =\gamma\left(1, p, t V_{p}^{\nu}\right) \tag{12}
\end{align*}
$$

Eq. 12 scales to every point along the curve. There may be restrictions on how much of the manifold can be mapped using this method.

