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1 Directional Derivatives
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For some vector U :
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Meaning that:
dxµ

dλ
= Uµ (3)

1.1.1 Parallel Transport

For all Uµ in which Eq. 3 is true there exists a V ν(λ) such that

Uµ∇µV ν(λ) = 0.

This is a parallel transport in which the path is given and we solve to find V ν(λ).
Parallel transport allows you to compare a vector in one tangent plane to a vector
in another. This is done by moving the vector along a curve without changing
it.
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1.1.2 Geodesics

A geodesic is a curve along which Uµ is preserved such that

Uµ∇µUν = 0.

This is a second order differential equation and you would solve for the path. A
geodesic is a length minimizing curve. In a plane this would be a straight line
and on a sphere this is a great circle.
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The equation λ −→ λ′ = aλ+b stays the same and rescales the velocity vector:

Uµ −→ U ′µ =
1

a
Uµ

Any vector at a point is the initial velocity of a geodesic with some parame-
terization. At any point p there exists a velocity Uν in the tangent space TpM
that is Uν = dxν/dλ for some λ along a geodesic.

1.2 Applying Directional Derivatives

For the case of the sphere the metric is given by:

ds2 = R2dθ2 +R2 sin2 θdφ2

In which the connection coefficients are:

Γθφφ = − sin θ cos θ Γφφθ = Γφθφ =
cos θ

sin θ

For the sphere in Fig. 1:

V ν(λ) =
(
V θ(λ), V φ(λ)

)
At λ = 0 this gives:

V ν(0) =
(
V θ(0), V φ(0)

)
=

(
V θ
0 , V

φ
0

)
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Figure 1: Looking at this sphere, the blue line is the path we have decided to
take where θ0 6= 0. The black line is the vector in question that we will be
watching to see how its direction changes as it moves along the path.

λ is some parameter along a decided monotonic path. In this case we choose
λ = φ. Since R is fixed we get two equations using Eq. 2 with dxµ/dλ = 1 since
we chose xµ = φ = λ:
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φ = 0
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These are examples of parallel transport. We will solve these equations to de-
termine how V changes in φ increments.

Plugging in the connection coefficients for θ = θ0:

dV θ

dλ
− sin θ0 cos θ0V

φ = 0
dV φ

dλ
+

cos θ0
sin θ0

V θ = 0 (6)

Now taking the derivative:

d2V θ

dλ2
− sin θ0 cos θ0

dV φ

dλ
= 0

d2V θ

dλ2
− sin θ0 cos θ0

cos θ0
sin θ0

V θ = 0

d2V θ

dλ2
− cos2(θ0)V

θ = 0 (7)

Solving Eq. 7 we get equations for V θ and V φ:

V θ = A cos [φ cos (θ0)] +
B

cos (θ0)
sin [φ cos (θ0)] (8)

V φ = C cos [φ cos (θ0)] +
D

cos (θ0)
sin [φ cos (θ0)] (9)
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Let φ = 0 then solving Eqs. 8 and 9 gives A = V θ
0 and C = V φ

0 . Taking the
derivative of these equations with respect to λ:

dV θ

dλ
= cos θ0A sin (φ cos θ0) +B cos (φ cos θ0)

dV φ

dλ
= cos θ0C sin (φ cos θ0) +D cos (φ cos θ0)

Setting φ = λ = 0 we can then use Eqs. 6 at to determine the other constants.
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φ
0 = −cos θ0
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0

The final result then gives an example of a geodesic:

V θ(φ) = V θ
0 cos (φ cos θ0) + sin θ0V

φ
0 sin (φ cos θ0) (10)

V φ(φ) = V φ
0 cos (φ cos θ0)−

1

sin θ0
V θ
0 sin (φ cos θ0) (11)

Now looking at two cases, one where θ0 = π/2 and the other where θ0 = π/3.

Case 1:

If θ0 = π/2 then sin θ0 = 1 and cos θ0 = 0 giving

V θ(φ) = V θ
0 V φ(φ) = V φ

0

for all φ

Case 2:

If θ0 = π/3 then sin θ0 =
√

3/2 and cos θ0 = 1/2 giving

V θ(φ) = V θ
0 cos

(
φ

2

)
+

√
3

2
V φ
0 sin

(
φ

2

)
V φ(φ) = V φ

0 cos

(
φ

2

)
+

2√
3
V θ
0 sin

(
φ

2

)
For φ = 0 we would get the same result as in Case 1, but if φ = 2π then we
would get negative of that result. The vector will be in the opposite direction
once it goes around the curve once.

2 Exponential Map

Given a point p and some vector V ν
p in the tangent space, there exists a geodesic

γp(λ) such that γp(0) = p and γ̇p(0) = V ν
p .
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Construct a 1D space where:

E = (p, V ν
p , γp(λ) = γp(λ, p, V

ν
p ), λ = (0, 1))

This includes all points and lines along a geodesic. The different points come
from different values for t, V ′ν = (1/t)V ν .
Note: If λ −→ λ′ = tλ where t exists between 0 and 1, then for different t the
endpoints for λ′ change.

Figure 2: This shows the map from the flat tangent space of the manifold (TpM)
to the manifold, defining an “exponential” map.

Looking at Fig. 2 we now have a map from the tangent space of the manifold to
the manifold.

What defines an “exponential” map:

expp(V
ν
p ) = γ(1, p, V ν

p )

expp(tV
ν
p ) = γ(1, p, tV ν

p ) (12)

Eq. 12 scales to every point along the curve. There may be restrictions on
how much of the manifold can be mapped using this method.
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