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1 Tensor Densities

The Levi-Civita symbol ε̃ is an antisymmetric nontensorial object which has the components spec-
ified below in any right-handed coordinate system

Levi-Civita is not a tensor because it does not change under a coordinate transformation.
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The Kronecker delta δµν = Diag(1...1) is a (1,1) tensor and so it transforms like
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Consider the determinant of an n× n matrix Mµ
µ′ defined
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The determinant is
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Consider the scalar |gµν | = g. If it’s not a matrix, how can we find its determinant? To convert
to a tensor, we can multiply by |g|w/2 where w is the weight of the density. The absolute sign exists
because Lorentzian metrics have g < 0.
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Now g is a not a scalar, but a (scalar) density of weight -2, which is the power to which the
Jacobian is raised. The Levi-Civita symbol is a density of weight 1.

So what we say is that ε̃ is a tensor density of rank 0.

√
−gε̃µ1...µn is a tensor = εµ1...µn .

The difference comes up because it is not a tensor, it’s the current density. The way we usually use
the current is a current density instead of an integrated current. It turns out that in the Hamiltonian
formulation, one uses the spatial components of gij as the canonical variables and the tensor density
is the momentum conjugate Πij.

gσσ and gσi will both turn out to be Lagrange multipliers, which means they are not dynamical
variables. Tensor densities play an important part in Hamiltonian theory.

Next topic is something that seems unrelated but will become more relevant before the end of
the day.

2 (Differential) Forms

A scalar has no indices so it is called a scalar form. The gradient of a function has one index and
in our language it will fit into the classifications of a one-form, previously treated as a covector.

φ − 0-form (scalar)

∇µf − 1-form (covector, for example the vector potential Aµ)

Fµν = ∇µAν −∇νAµ − 2-form (totally antisymmetric)

k-forms are a subclass of (0, k) tensors.

Suppose we have a p-form A and a q-form B. Then we denote the (p+ q)-form (A ∧ B)p+q,

(A ∧ B)p+q =
(p+ q)

p!q!
(A[µ1...µpBµp+1...µp+q ])

Consider:

• if A, B are 1-forms,

(A ∧ B) =
2!

1!1!
· 1

2
(AµBν − AνBµ)

• if A is a 1-form (Aµ) and B is a 2-form (Bµν = −Bνµ).

Cµνσ = (A ∧ B)µνσ =
3!

1!2!

1

6
(AµBνσ + AνBσµ + AσBµν − AµBσν − AνBµσ − AσBνµ)

= (AµBνσ + AνBσµ + AσBµν)

Cνµσ = (AνBµσ + AσBνµ + AµBσν) = −Cµνσ

We could have a basis of many different forms. Right now, we haven’t specified anywhere a
dimensionality. We could be working in 3D, 4D, or even 2D (although this wouldn’t work in 2D so
we must work in at least 3D).
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Hodge Duality
There exists a dual space for a k-form

(∗A)n−k = εµ1...µkνk+1...n
Aµ1...µk

The above is an (n−k)-form. The Hodge operator(∗) is a map from k-forms to (n-k)-forms, mapping
A to ’A dual’ (Hodge dual). So we can map back and forth between them

(∗ ∗ A) = (−1)s+k(n−k)A s =

[
−+ ++ = 1
+−−− = 3

]
In 4D, the dual (∗F ) is a 2-form.

F =


0 Fij

0
0

−Fij 0

 ∇µF
µν = 0

In 3D, the dual of the wedge of two 1-forms is a 1-form. This is also why A × B is a pseudo-
vector. It has three components but does not transform as a vector, where the appearance of the
Levi-Civita tensor explains why the the cross product changes sign under interchange of two basis
vectors.

If A is a p-form we can look at

(dA)p+1 form = (p+ 1)∂µ1...µp+1

The d(dA) of anything is zero.
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