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Geodesic equation derivation:

We start with the action we saw at the end of the last class.

S =
1

2

∫
−gµν

dxµ

dτ

dxν

dτ
dτ (1)

We want to find the geodesic equation by using variational principles on the above given action.

δS =
1

2

∫
−dx

µ

dτ

dxν

dτ
δgµν + gµν

dδxµ

dτ

dxν

dτ
+
dxµ

dτ

dδxν

dτ
(2)

δS =
1

2

∫
− gµν
dxσ

dxµ

dτ

dxν

dτ
δxσ + gµν

dδxµ

dτ

dxν

dτ
+ gµν

dxµ

dτ

dδxν

dτ
(3)

Integrating the second and the third terms by parts we get,

δS =
1

2

∫
− gµν
dxσ

dxµ

dτ

dxν

dτ
δxσ +

d

dτ

(
gµν

dxν

dτ

)
δxµ +

d

dτ

(
gµν

dxµ

dτ

)
δxν (4)

δS =
1

2

∫ [
gσν

d2xν

dτ2
+ gµσ

d2xµ

dτ2
+
dxµ

dτ

dxν

dτ

(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)]
δxσdτ (5)

Since δs = 0, we have:

gσν
d2xν

dτ2
+ gµσ

d2xµ

dτ2
+
dxµ

dτ

dxν

dτ
(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

) = 0 (6)

And:

gρσ
[
gσγ

d2xγ

dτ2
+ gµσ

d2xµ

dτ2
+
dxµ

dτ

dxν

dτ

(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)]
= 0 (7)

After contraction:

d2xρ

dτ2
+

1

2
gρσ(

∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
dxµ

dτ

dxν

dτ
= 0 (8)

At this point we can define the christoffel symbols:

Γρµν =
1

2
gρσ

(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
(9)

Substituting which above, the geodesic equation will become:

d2xρ

dτ2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0 (10)
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which can also be written as,
dxν

dτ

[
∂

∂xν
dxρ

dτ
+ Γρµν

dxµ

dτ

]
= 0 (11)

The geodesic equation is an equation of motion and hence a general solution which is dependent on
the metric. Depending upon how the metric behaves, we will get the appropriate solutions. Here
we also make an important observation about the tensor nature of the Christoffel coefficients. The
christoffel coefficients are composed of partial derivatives and hence do not transform as tensors
of (1,2) type would transform. However, the bracket as a whole does transform as a tensor. If
we notice carefully, there are no partial derivatives if the bracket is expanded fully and the partial
derivatives are written as kronecker delta function. Hence, we redefine the bracket as,

Y ρ
ν =

∂

∂xν
dxρ

dτ
+ Γρµν

dxµ

dτ
(12)

and this newly defined quantity Y ρ
ν does transform as a (1,1) tensor. Also, the first term dxν

dτ is
the velocity and will transform as a (1,0) tensor. This changes our geodesic equation to be written
in a more simple form as,

Aρ = V νY ρ
ν = 0 (13)

This action for which we have written the geodesic equation is not invariant under reparametrization

as the standard action would be. For S = 1
2

∫ √
−gµν dx

µ

dτ
dxν

dτ dτ , this action would actually be

invariant under reparametrization. A tranformation of the form τ → τ ′ = Aτ +B, this action will
only carry a constant with it and will end up giving the same geodesic equaiton, making it invariant
under reparametrization.

1 Solutions to the geodesic equation:

Now we can look at the solutions of the geodesic equation starting from the simplest case of the
flat space metric.

1.1 Flat Space Metric

If the spacetime is flat, gµν = diag(−1, 1, 1, 1)

Then we have ∂gσν

∂xµ = 0 and d2xρ

dτ2
= 0 thus it gives us the solution is

xρ = xρ0 + vρτ (14)

where τ is a parameter. For the reparmetrization invariant action, we typically normalize with the
condition, V µV νgµν = −c2

to get the normalized action as
√
−gµν dx

µ

dτ
dxν

dτ = c which is the case for a timelike event. We can

have different normalisation conditions which will give us
√
−gµν dx

µ

dτ
dxν

dτ = 0 which gives us the

condition for the null motion or the light path.
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Coming back to the flat space time, the action exactly will be:

s = −1

2

∫ [
c2
(
dt

dτ

)2

−
(
dx

dτ

)2

−
(
dy

dτ

)2

−
(
dz

dτ

)2
]
dτ (15)

The canonical momentums are:

Pµ =
δs

δ(dx
µ

dτ )
(16)

Thus the canonical momentum corresponding to t is:

Pt = c2
dt

dτ
(17)

Because the lagrangian doesn’t depend on t or xi for that matter, Pµ will also be a constant. For
the particular case of Pt being a constant, the general solution will be τ = At+B, where A and B
are some constants. Similarly we can find that Px, Py, Pz are also constant.

The same metric in spherical coordinates will be written as,

s = −1

2

∫ [
c2
(
dt

dτ

)2

−
(
dr

dτ

)2

− r2
(
dθ

dτ

)2

− r2 sin2 θ

(
dφ

dτ

)2
]
dτ (18)

Now, in spherical coordinates Pt, Pφ are still constant, but Pr, Pθ are no longer constant. However,
Lx and Ly are still constant along with the other components which is consistent with the previous
result.
If we make a Lorentz transform, the action in the new system is,

s = −1

2

∫ [
c2
(
dt′

dτ

)2

−
(
dx′

dτ

)2

−
(
dy′

dτ

)2

−
(
dz′

dτ

)2
]
dτ (19)

x′ = γ(x− ut)
t′ = γ(t− ux/c2)

Where u is the relative velocity between two systems, and γ = 1/
√

1− u2/c2. We can also find the
reverse transform:

x = γ(x′ + ut′)
t = γ(t′ + ux′/c2)

(20)
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If x = ut, t = γt′ and x′ = 0, and t′ is called the proper time. In this arrangement we can now
compare two situations, one where a particle travels the x = vt path reaches a point(the green
path) and another when we travel along the light path(see diagram) x = ct followed by x = −ct
which takes us to the same position.
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