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1 Kerr BH Conformal Diagram

We start with the Kerr Metric,

ds2 =

(
1− 2GMr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2
Σ2dφ2 − 2GMarsin2θ

ρ2
(dtdφ+ dφdt) (1)

ρ2 = a2cos2θ + r2 ∆ = r2 − 2GMr + a2 Σ2 = [(r2 + a2)2 − a2∆sin2θ]

and the conformal diagram looks like,

Here we must note that each point on the conformal diagram is a closed surface and hence the geometries
are different at each of these points. The event horizons in this geometry are the zeros of ∆ and are given
by, r± = M ±

√
M2 − a2. Here we keep in mind that these are event horizons and not the Killing Horizons.

Just looking at the simple expressions, we can see that the there are three cases,

M > a > 0 =⇒ r± > 0, r± ∈ Real
a < 0 =⇒ NakedSingularity

a = M =⇒ Unstablesolution

We are only interested in the case where we see a real and positive solution for the event horizons.

2



In the first figure we see a r, θ representation of a point in the conformal diagram. The hyperbolic lines
are all θ = constant lines and the elliptical lines are r = constant lines in the geometry. The dots we see
highlighted in the first image can be drawn elaborately in the second image. Hence, the second image is a
mere projection of the first image.

Another point to note here are the Killing Vectors in this metric. As none of the components in the metric
ar a function of φ or t, we have T = ∂t and Φ = ∂t as our two first Killing Vectors.

If we look at the side projection of the conformal diagram,

We can see that the Killing Horizons are at r = 2M at θ = π/2, whereas the event horizons are at r = r±∀θ.
In this geometry the Killing Vector, T , which is timelike outside the event horizon changes and becomes
spacelike as it goes inside the event horizon. In the image above, a particle travelling with the BH along it’s
direction of rotation, the particle will rotate. However, a particle in the opposing direction of the spin will
stay at the same position.

2 Angular Momentum

We consider null geodesics in the equitorial plane to make our life simple. So as a typical stable equitorial
orbit,

ṙ = 0 θ̇ = 0 θ =
π

2

This leaves us with,

0 = ds2 =

(
1− 2GM

r

)
dt2 − 4GMa

r
dtdφ+

[(r2 + a2)2 − a2]

r2
dφ2

∂φ

∂t
=
gtφ +

√
g2tφ − gttgφφ
gφφ

And in the stationary limit surface of the Kerr Metric,

gtt = 0

And the two solutions are,

dφ

dt

∣∣∣∣
gtt=0

= 0
dφ

dt

∣∣∣∣
gtt=0

=
2gtφ
gφφ

dφ

dt

∣∣∣∣
gtt=0

= 0
dφ

dt

∣∣∣∣
gtt=0

=
a

2M2 + a2
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and we can also find,

dφ

dt

∣∣∣∣
r=r+

=
2Ma

4M2(M +
√
M2 − a2)

=
a

a2 + r2+
= ΩH

The Killing Vector associated with this is,

Kµ = Tµ + ΩHΦµ

and this makes r± a Killing Horizon for this Killing Vector.

3 Penrose Process

In the ergo region, we have E = −TµPµ < 0 as Tµ is spacelike. The plunge however occurs when the
E > 0. If you are falling in the horizon, your energy is already +ve, If you throw a particle inside the r = r+
boundary, Eparticle < 0

=⇒ energy after > energy before =⇒ BH energy goes down =⇒ MBH goes down. The reduction in this
mass can be done repetitively until the all the rotational energy of the Black Hole is over. After that point
the energy or the mass won’t go down. At this point, what remains

M2
in =

A+

4π

=
r2+ + a2

4π

=
2Mr+

4π

where the amount of mass lost is ∆M = M −Mir ≤M
(

1− 1√
2

)
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