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1 Static Schwarzschild Star

In order to understand gravitational collapse to a black hole, we should first understand static
configurations describing the interiors of spherically symmetric stars. Consider the general static,
spherically symmetric metric in a static vacuum

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ (1)

for which the Christoffel symbols, the Riemann tensors, and the Ricci tensors have been calcu-
lated in the beginning of chapter 5. From these, the curvature scalar can be given by

R = −2e−2β
[
∂2rα + (∂rα)2 − ∂rα∂rβ +

2

r
(∂rα− ∂rβ) +

1

r2
(1− e2β)

]
(2)

The Einstein tensor can be calculated using the Ricci tensor and curvature scalar and is given
by

Gt
t = − 1

r2
e−2β

(
2r∂rβ − 1 + e2β

)
(3a)

Gr
r =

1

r2
e−2β

(
2r∂rα + 1− e2β

)
(3b)

Gθ
θ = e−2β

(
∂2rα + (∂rα)2 − ∂rα∂rβ +

1

r
(∂rα− ∂rβ)

)
(3c)

Gφ
φ =

1

sin2 θ
Gθ
θ. (3d)

Initially considering the absence of a source, Eqns. 3a and 3b go to zero independently, meaning
we can set their difference equal to zero, which allows us to solve for α in terms of β.

2r∂rβ − 1 + e2β + 2r∂rα + 1− e2β = 0

2r∂rβ + 2r∂rα = 0

α = −β (4)

By setting Eqn. 3a equal to zero, it is possible to solve for β(r). Make the substitution V = e−2β

and use V ′ = −2V ∂rβ to compute

2r∂rβ − 1 + e2β = 0

r
V ′

V
− 1 +

1

V
= 0

rV ′ − V + 1 = 0

−(rV )′ + 1 = 0

[r(V − 1)]′ = 0. (5)
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Since this is a first derivative equal to zero, we can set the function inside the brackets equal to
an integration constant with the same dimensions as r (since V is dimensionless).

r(V − 1) = constant ≡ −rS (6)

The integration constant rS is interpreted as the Schwarzschild radius and we must define it in
terms of some physical parameter. Since the Schwarzschild metric should reduce to the weak-field
case when r � GM

gtt = −
(

1− 2GM

rc2

)
(7)

then we must identify

rS =
2GM

c2
(8)

which gives us

V = 1− 2GM

rc2
. (9)

Since we found that α = −β, we have the relation

e2α = e−2β = V = 1− 2GM

rc2
. (10)

To proceed, we will have to use the energy-momentum tensor and the conservation equations

∇µG
µ
ν = 0→ ∇µT

µ
ν = 0. (11)

If we add a constant to the Einstein tensor, which means changing the Einstein equations from

Gµν = 8πTµν → Gµν + Λgµν =
8πG

c4
Tµν (12)

where Λ is a cosmological constant, it’s obvious that the covariant divergence of this side will
also be zero if lambda is a constant so this will still be conserved. It should be noted that Λ is not
a constant of integration (like rS) and that it could have come from the Lagrangian.

When we discuss the rotating black hole, we will see that there is no real way you can write
down the solution in terms of integrations in this way. One must use Cauchy-Riemann’s equations
and write down a hypothesis for the form of solution, which has constants in it; the solution holds
for any value of those constants but you can never get their values by simple integration. Unlike
a stationary black hole, which is defined only by its mass, a rotating black hole is defined by two
parameters: mass and angular momentum. This is why Schwarzschild was able to solve Einstein’s
equations mere months after Einstein published his theory but then it took almost 50 years for
someone to find a solution which corresponds to a vacuum spacetime with rotation.

To proceed, we model the star itself as a perfect fluid, with energy-momentum tensor in the rest
frame given by

Tµν =


−ρ(r)

p(r)
p(r)

p(r)

 (13)
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For a perfect fluid, we require ρ(p) in order to solve the conservation equation. The only
conservation equation that matters is when ν = r because every other value of ν will give only zero.

∇µT
µ
r = ∂rT

r
r + ΓµλµT

λ
r − ΓλrµT

µ
λ = 0. (14)

The only Christoffel symbols that contribute here are

Γttr = ∂rα (15a)

Γrrr = ∂rβ (15b)

Γθrθ =
1

r
(15c)

Γφrφ =
1

r
(15d)

and the derivative is only nonzero if λ = r so only one derivative survives and due to the fact
that the energy-momentum tensor is diagonal, the conservation equation becomes

∇µT
µ
ν = ∂rT

r
r + ΓtrtT

r
r + ΓrrrT

r
r + ΓθrθT

r
r + ΓφrφT

r
r − ΓtrtT

t
t − ΓrrrT

r
r − ΓθrθT

θ
θ − ΓφrφT

φ
φ

= ∂rρ(r) + Γtrtp(r) + Γrrrp(r) + Γθrθp(r) + Γφrφp(r) + Γtrtρ(r)− Γrrrp(r)− Γθrθp(r)− Γφrφp(r)

= ∂rρ(r) + Γtrtp(r) + Γtrtρ(r)

= ∂rρ(r) + [p(r) + ρ(r)]∂rα = 0.
(16)

If we can get ρ→ ρ(p(r)) then we could integrate over r. A simple and semi-realistic model of
a star comes from assuming that the fluid is incompressible so we make the choice that the density
is constant out to the surface of the star

ρ ≡ ρ∗ = constant. (17)

This assumption is not very realistic but it holds for small objects. Note that the derivative of
p with respect to ρ, which is the speed of sound, is not well-defined in this case because ρ does not
vary.

∂p

∂ρ
≈ v2s = ? (18)

This is the most serious flaw in this assumption. It’s not physical but it is a solution to the
equation. With this substitution, we can try to integrate

∂rp+ (ρ+ p)∂rα = 0. (19)

By differentiating the substitution made earlier

e−2β = 1− 2GM

r

−2∂rβe
−2β = −2G∂rm

r
+

2Gm

r2
(20)
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and substituting this into equation 3a but now with a source we find

Gt
t = − 1

r2
e−2β

(
2r∂rβ − 1 + e2β

)
= −2

r
e−2β∂rβ +

1

r2
e−2β − 1

r2

=
1

r

(
−2G∂rm

r
+

2Gm

r2

)
+

1

r2
e−2β − 1

r2

= −2G∂rm

r2
+

2Gm

r3
+

1

r2

(
1− 2GM

r

)
− 1

r2

= −2G∂rm

r2
+

2Gm

r3
+

1

r2
− 2GM

r3
− 1

r2

= −2G∂rm

r2
= −8πGρ∗ (21)

giving us the relation

dm

dr
= 4πr2ρ∗ (22)

which can be integrated to find an equation for m

m(r) = 4π

∫
ρ∗r

2dr. (23)

This is not a proper integral. It’s not an integral over a 3-volume. We could replace this by the
usual spherical volume element but there should be a

√
grr in here to make this a proper integral.

What happened here is that the mass that formed this thing is bigger than the mass that we are in
orbit around because the binding energy has not been considered here. However, we need to solve
the integral, regardless.

Evaluating equation 3b with a source

Gr
r =

1

r2
e−2β

(
2r∂rα + 1− e2β

)
= 8πGp (24)

we find

∂α

∂r
=

(8πGr2p+ 1) e2β − 1

2r
(25)

We can ask: what is the relationship between m and β? To answer this, we look back at the
substitution made earlier and find

m(r) =
r

2G

(
1− e−2β

)
. (26)

We can rearrange Eqn. 19 to get

∂α

∂r
=
−∂p
∂r

(ρ+ p)
=

8πGr2p+ 2Gm/r

2rc2
(
1− 2Gm

rc2

) (27)

which finally gives
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−
∂p
∂r

(ρ+ p)
=
G (m(r) + 4πr3p)

r2c2
(

1− 2Gm(r)
rc2

) (28)

As c→∞ this equation becomes

∂p

∂r
= −ρGm

r2
(29)

where we can recognize Gm/r2 as the acceleration due to gravity and we wind up with

dp = −ρgdr. (30)

This process ultimately leaves us with the Tolman-Oppenheimer-Volkoff equation, the
equation of hydrostatic equilibrium

dp

dr
= −G(ρ+ p)[m(r) + 2πr3p]

r2c2 − 2Gm(r)
(31)

which we can rewrite using m = (4/3)πr3ρ∗ and separate into an integrable form

−dp
(ρ∗ + p

c2
)(ρ∗ + p

3c2
)

= 4π
drr

1− 8πGρ∗r2/c2
(32)

to obtain a relation between p and R

p(r) = ρ∗

[
R
√
R− 2GM/c2 −

√
R3 − 2GMr2/c2

√
R3 − 2GMr2c2 − 3R

√
R− 2GM/c2

]
(33)

where M = (4/3)πR3ρ∗. From this we can see that when r = R, the pressure is zero. Finally
we get the metric component gtt = −e2α by integrating Eqn. 25 and find

eα =
3

2

(
1− 2GM

R

)1/2

− 1

2

(
1− 2GMr2

R3

)1/2

, r < R. (34)

The pressure increases near the core of the star, as one would expect. For a star of fixed radius
R, the central pressure p(0) will need to be greater than infinity if the mass exceeds

Mmax =
4

9G
R. (35)

Thus, if we try to squeeze a greater mass than this inside a radius R, general relativity admits no
static solutions; a star that shrinks to such a size must inevitably keep shrinking, eventually forming
a black hole. Although we derived this result from the assumption that the density is constant, it
continues to hold with that assumption considerably weakened; Buchdahl’s theorem states that
any reasonable static, spherically symmetric interior solution has M < 4R/9G.
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