PHZ 6607 Special and General Relativity October 3, 2018

Nathaniel Strauss (Ioannis Michaloliakos)

1 Scattering in Schwarzschild

Today we will discuss unbound orbits in the Schwarzschild geometry, or scattering off of a Schwarzschild black hole. Previously, we derived the geodesic equation

$$
\left(\frac{d r}{d \tau}\right)^{2}=c^{2}\left(\left(E / m c^{2}\right)^{2}-1\right)+\frac{2 G M}{r}-\frac{L^{2}}{m^{2} r^{2}}+\frac{2 G M L^{2}}{m^{2} r^{3} c^{2}}
$$

where $E=m\left(1-2 G M / r c^{2}\right) d t / d \tau$ is the relativistic energy of the particle at infinity and $L=m r^{2} \sin ^{2} \theta d \phi / d \lambda$ is the angular momentum of the particle. We also defined the variable $u=1 / r$, the angular momentum per unit mass $\tilde{L}=L / m$, and the relativistic energy per unit mass $\tilde{E}=E / m c^{2}$. Making these substitutions, we found

$$
\frac{d^{2} u}{d \phi^{2}}=\frac{G M}{\tilde{L}^{2}}-u+\frac{3 G M}{c^{2}} u^{2}
$$

We defined the impact parameter b by $G M / \tilde{L}^{2}=1 / b$. We will now solve this equation to first order in the quantity $3 G M / c^{2}$, so we write

$$
u=u_{0}+\left(\frac{3 G M}{c^{2}}\right) u_{1}+O\left(\left(\frac{3 G M}{c^{2}}\right)^{2}\right)
$$

1.1 Zeroth order

The zeroth order equation is then

$$
\frac{d^{2} u_{0}}{d \phi^{2}}=\frac{1}{b}-u_{0} .
$$

The solution to this equation is

$$
u_{0}=\frac{1}{b}(1+\varepsilon \cos \phi),
$$

where $\varepsilon>1$ is the eccentricity for a hyperbolic orbit. Recall that

$$
\pi / 2<\phi_{\max }=\arccos (-1 / \varepsilon)<\pi
$$

Taking the derivative, we get

$$
\frac{d u_{0}}{d \phi}=-\frac{\varepsilon}{b} \sin \phi=-\frac{1}{r^{2}} \frac{d r}{d \phi} .
$$

Since $d u / d \phi=-\left(1 / r^{2}\right) d r / d \phi$, we can now examine what happens at large r, or as $\phi \rightarrow \phi_{\max }$. Taking this limit,

$$
\lim _{\phi \rightarrow \phi_{\max }} \frac{1}{r^{2}} \frac{d r}{d \phi}=\frac{\epsilon}{b} \sin (\arccos (-1 / \varepsilon))=\frac{\varepsilon}{b} \sqrt{1-(1 / \varepsilon)^{2}}=\frac{\sqrt{\varepsilon^{2}-1}}{b}=\sqrt{\frac{c^{2}}{\tilde{L}^{2}}\left(\tilde{E}^{2}-1\right)}
$$

Separately, since in this limit we know that

$$
\frac{d r}{d \tau}=\frac{\tilde{L}}{r^{2}} \frac{d r}{d \phi}=c \sqrt{\tilde{E}^{2}-1}
$$

we can solve for the eccentricity:

$$
\begin{aligned}
\frac{\sqrt{\varepsilon^{2}-1}}{b} & =\sqrt{\frac{c^{2}}{\tilde{L}^{2}}\left(\tilde{E}^{2}-1\right)} \\
\Longrightarrow \varepsilon^{2} & =1+\left(\frac{\tilde{L} c}{G M}\right)^{2}\left(\tilde{E}^{2}-1\right)
\end{aligned}
$$

This reproduces the non-relativistic result.

2 First order

Given knowledge of u_{0}, the first order equation is

$$
\frac{d^{2} u_{1}}{d \phi^{2}}=-u_{1}+\frac{3 G M}{c^{2}} \frac{1}{b^{2}}\left(1+2 \varepsilon \cos \phi+\frac{\varepsilon^{2}}{2}(1+\cos 2 \phi)\right)
$$

The solution to this equation is given by

$$
u_{1}=A+B \phi \cos \phi+c \cos 2 \phi,
$$

where

$$
A=\frac{3 G M}{c^{2}} \frac{1}{b^{2}}\left(1+\varepsilon^{2} / 2\right), \quad B=\frac{3 G M}{c^{2}} \frac{1}{b^{2}} \varepsilon, \quad C=-\frac{G M}{c^{2}} \frac{1}{b^{2}} \frac{\varepsilon^{2}}{2} .
$$

Thus, our solution for $u=1 / r$ to first order is

$$
u=u_{0}+u_{1}=\frac{1}{b}\left(1+\frac{G M}{b c^{2}}\left(3+2 \varepsilon^{2}\right)+\varepsilon \cos \left(\left(1-\frac{3 G M}{b c^{2}}\right) \phi\right)-\frac{G M}{b c^{2}} \varepsilon \cos ^{2} \phi\right) .
$$

By combining the trigonometric terms and taking an approximation, we arrive at the new deflection angle

$$
\phi_{\max }=\left(1-\frac{3 G M}{b c^{2}}\right)^{-1} \arccos \left(-\frac{1+\frac{2 G M}{b c^{2}}\left(1+\varepsilon^{2}\right)}{\varepsilon}\right)
$$

which is advanced compared to the $\phi_{\max }$ in the Newtonian case.

