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1. Geodesics of Schwarzschild

Following from last class, we start with the Lagrangian:

L =
1

2
m
[
− c2

(
1− 2GM

rc2

)( dt
dλ

)2
+

( dr
dλ

)2

(1− 2GM
rc2

)
+ r2

(dθ
dλ

+ sin2 θ(
dφ

dλ
)2
)
.

Recall that we will also use the following relation:

pµpνgµν = −m2c2 , (1)

and for photons (and all other massless particles):

pµpνgµν = 0 .

In addition, τ → 0. So we can consider:

lim
m→0

lim
τ→0

m

dτ 2
→ 1

dλ2
.

In some sense, this is not quite satisfactory because this says that [λ] = s · kg−1/2 which

is not natural. However, if we choose:

Pt = −E ≡ hν ,

then [λ] = s. What we are doing here is making the numerical value of the mass m hold

the dimensionality of the mass m.

Let’s now look at the effective potential for photons. We will begin by calculating

the momenta, and for the moment we will leave mass m in:

pt = −E = −m
(

1− 2GM

rc2

) dt
dλ

,

pφ = L = mr2 sin2 θ
dφ

dλ
.

Writing out Equation 1 and choosing an equatorial orbit (θ = π/2, φ = 0):

−E2

c2(1− 2GM
rc2

)
+

m2( dr
dλ

)2

(1− 2GM
rc2

)
+
L2

r2
= −m2c2 .

We can simplify this expression by writing in terms of Ẽ = E/m and L̃ = L/m:

−Ẽ2

c2
(

1− 2GM
rc2

) +
m2( dr

dλ
)2

(1− 2GM
rc2

)
+
L̃2

r2
= −εc2
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where:

ε =


1 : timelike

−1 : spacelike

0 : lightlike

.

So far, this is the same as last lecture (see previous class notes). However, we will now

consider for a photon (m = 0, lightlike) and solve for dr/dλ:(dr
dλ

)2
=
Ẽ2

c2
− L̃2

r2

(
1− 2GM

rc2

)
. (2)

Let’s define V 2
eff as:

V 2
eff =

L̃2

r2

(
1− 2GM

rc2

)
.

We are interested in the derivative of V 2
eff with respect to r is:

dV 2
eff

dr
=
−2L̃2

r3
− 2L̃2

r3

(
− 2GM

rc2

)
+
L̃2

r2
2GM

r2c2

)
,

dV 2
eff

dr
= −2L̃2

r3

(
1− 3GM

rc2

)
.

Figure 1. Effective potential for a photon in Schwarzschild.
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Figure 1 shows a plot of V 2
eff . For every value of L̃, V 2

eff is zero at r = 2M and

V 2
eff is maximum at r = 3M . So, a light ray of energy E coming in will scatter back if

E2 < V 2
eff . And a light ray can sit in an unstable circular orbit if E2 = V 2

eff .

2. Tying this into detection of gravitational waves made by LIGO

Figure 2. Adapted from GW150914 detection paper.

On September 14, 2015, gravitational waves caused by two black holes merging

were detected by LIGO (GW150914). After the peak of the signal from the merger, the

signal decayed exponentially. The exponential decay can be associated with photons

that are sitting near (but not directly at) r = 3M , the radius for unstable circular orbit.

Remember that this is a dynamical spacetime so the unstable point is actually moving.

Photons sitting in the neighborhood of this unstable point will orbit until they leak out.

So, the frequency and decay time of the gravitational wave signal can be estimated from

knowing this potential Veff . The exponential decay is composed of an infinite number

of quasinormal modes, which correspond to a pair of points in the complex plane (see

Figure 3). Even with the data from GW150914 (and other black black hole events

since), we could not deduce information about the quasinormal modes.
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Figure 3. Cartoon of the most long lived quasinormal mode (with units of M , R

surpressed). The real part corresponds to the frequency of the mode, and the imaginary

part corresponds to the decay rate. The factor of 1/2 indicates that the mode decays

quickly.

3. Orbits of photons around black holes

Let’s consider the circular orbits. Setting r = 3M and including dimensionality:(dr
dλ

)2
=
Ẽ2

c2
− L̃c4

27G2M2
.

So a photon of circular orbit has:

Ẽ =
1√
27

L̃c3

GM
.

Next time we will discuss geometries in which a black hole has existed forever, in

which we have what is called a black hole in the future, and a white hole in the past

where it is possible for a photon to exit the white hole. For now, we only consider

photons which start outside the black hole and could either bounce off the potential or

go in the black hole. If there is no angular momentum L̃ = 0, there is no turning point

and the photon will just fall straight in. If the photon has low enough energy, then it
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will not hit the black hole and will turn out at some turning point dependent on the

angular momentum. For a fixed angular momentum, the turning point will be further

and further away for lower energies. This corresponds to Figure 4.

Figure 4.

Next, we can look at the scattering angle ∆φ (see Figure 5). Returning to

Equation 2, we will let x = L2/GMr. The other equation we need is:

L̃ = r2
dφ

dλ
.

It follows then that:

d

dλ
=
L̃

r2
d

dφ
,

and:

d
1

r
=
GM

L̃
dx .

Substituting this in, we get:

L̃

r2
dr

dφ
= −GM dx

dφ
.

We will use Equation 2 to solve for dφ/dx:

−GM
L̃

dx

dφ
=

1

L̃

[Ẽ2

c2
−
(GMx

L̃

)2(
1− 2GM

c2L̃

GMx

L̃

)] 1
2

.

Making one more substitution u = GMx/L̃:

du

dφ
=
[ Ẽ2

L̃2c2
− 1

L̃2
u2
(

1− 2GM

L̃2c2
u
)] 1

2

.

We are interested in the change in angle so we can write:

dφ = du
[ Ẽ2

L̃2c2
− 1

L̃2
u2
(

1− 2GM

L̃2c2
u
)]− 1

2
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If we choose an orbit far so that the deflection is not large, we can treat D ≡ 2GM/L̃c2

as small:

dφ = du
[ Ẽ2

L̃2c2
−Du

)]− 1
2

We can replace:

y = u(1−Du) ,

and dropping higher order terms:

dy = du(1−Dy) + HOT ,

y2 = u2(1− 2Du) + HOT .

We are left with:

dφ = dy(1 + 2Dy)
[ Ẽ2

L̃2c2
− y

L̃2

)]− 1
2

Integrating both sides:

∆φ =

∫
dy(1 + 2Dy)

[ Ẽ2

L̃2c2
− y

L̃2

)]− 1
2

We want the first term on the r.h.s. in the form of:∫
dz√

1− z2
= arcsin(z) .

This is achieved with the substitution of z = cy/E. The second term on the r.h.s. is of

the form: ∫
Dydy√
A−By2

= −2D

B

√
A−By2 .

So the bending angle is:

∆φ =
4D
√
A

B
,

∆φ =
4GMẼL̃

c3
.

When we do a similar calculation for a massive particle, the deflection is:

∆φ =
6GMẼL̃

c3
.

So a photon follows an orbit which is different from the orbit of any massive particle.
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Figure 5.


