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Action Principle

Using the metric as the dynamical variable, we can make scalars to use as the Lagrangian. The
simplest independent scalar constructed from the metric is the Ricci scalar. Hilbert proposed this as
the simplest choice for a Lagrangian (known as the Hilbert action):

SH =

∫
d4x
√
−gR(gµν), (1)

and we consider the behavior of SH under small variations of the inverse metric using R = gµνRµν :

δSH =

∫
d4x
√
−g
(
gµνδRµν +Rµνδg

µν +R
δ
√
−g√
−g

)
, (2)

where we can call these three terms (δSH)1 , (δSH)2 , and (δSH)3, respectively.
Last week we saw that

δg = ggµνδgµν = −ggµνδgµν , (3)

and if we look at δgµν , we have
δgµν = −gµρgνσδgρσ. (4)

This comes from considering δ(gµσgσν) = 0, since gµλgλν = δµν (the Kronecker delta) is unchanged
under any variation.

We also have that

δ
√
−g =

1

2

δ(−g)√
−g

= −1

2

−g√
−g

gµνδg
µν

= −1

2

√
−ggµνδgµν ,

(5)

which contributes under the integral.
Considering the Riemann tensor:

Rρµλν = ∂λΓρνµ + ΓρλσΓσνµ − (λ↔ ν), (6)

we can do variations on the connection by replacing Γρνµ → Γρνµ + δΓρνµ and taking the covariant
derivative:

∇λ(δΓρνµ) = ∂λ(δΓρνµ) + ΓρλσδΓ
σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ. (7)

It can be shown that
δRρµλν = ∇λ(δΓρνµ)−∇ν(δΓρλµ), (8)
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and now we can express (δSH)1 as:

(δSH)1 =

∫
d4x
√
−ggµν

[
∇λ(δΓλνµ)−∇ν(δΓλλµ)

]
=

∫
d4x
√
−g∇σ

[
gµν(δΓσµν)− gµσ(δΓλλµ)

]
.

(9)

Plugging in the expression for δΓσµν in terms of δgµν , which turns out to be

δΓσµν = −1

2

[
gλµ∇ν(δgλσ) + gλν∇µ(δgλσ)− gµαgνβ∇σ(δgαβ)

]
,

we then have

(δSH)1 =

∫
d4x
√
−g∇σ

[
gµν∇σ(δgµν)−∇λ(δgσλ)

]
.

The above is an integral with respect to the natural volume element of the covariant divergence
of a vector. According to Stokes’s Theorem, this is equal to a boundary term at infinity, which we
can set to zero by making the variation vanish at infinity. Therefore, this term contributes nothing
to the total variation. Thus, we are left with

δSH =

∫
d4x
√
−g
(
Rµν −

1

2
Rgµν

)
δgµν

=

∫
d4x
√
−gGµνδgµν .

(10)

Energy Conditions

In order to understand properties of Einstein’s equations that hold for a variety of different sources
(not only for specific cases such as scalar fields, EM fields, etc), we need to impose energy conditions
that limit the arbitrariness of Tµν . For instance:

Tµν(yσ) = m

∫ [
δ4(yσ − xσ(τ))√

−g
dxµ

dτ

dxν

dτ
dτ

]
=

[
mδ3(yi − xi(t))√

−gut

]
uµuν

= ρuµuν ,

(11)

where ρ is the energy density.
Let’s consider matter that is composed of point particles in order to deal with the fact that

when we begin to accelerate a large object by exerting a force on a particular side, then that side
would tend to accelerate before the opposite side would, which would make our analysis much more
complex. In this case, the stress tensor for perfect fluid is:

Tµν = (p+ ρ)uµuν + pgµν , (12)

where uµ is the fluid 4-velocity. In the case of electromagnetism, for example, TµµEM = 0, which gives
p = 1/3ρc2.

The problem is that it is not clear how generic this stress tensor structure is, e.g. how it appears
in the rest frame, and whether the assumption of a perfect fluid is a solid assumption for any general
case. Are there ways to get stress tensors that do not depend on being a perfect fluid? Also, there
are an infinite number of metrics that obey Einstein’s equation: simply compute Gµν for a certain
metric and then set Tµν = Gµν , however, we are looking for solutions for “realistic” sources of energy.
A way to do that is by imposing energy conditions, which are coordinate-invariant restrictions on the
energy-momentum tensor. There are various possible energy conditions; we list some of them below.
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Weak Energy Condition (WEC)

The WEC states that
Tµνt

µtν ≥ 0, (13)

where tµ is any time-like vector.
This implies that ρ ≥ 0 and ρ+p ≥ 0. This allows negative pressure, as can be seen in the Figure

on the next page.

Null Energy Condition (NEC)

The NEC states that
Tµν l

µlν ≥ 0, (14)

where lµ is any null vector.
This also implies ρ + p ≥ 0 as the NEC is a special case for the WEC. The energy density may

be negative as there may be a compensating positive pressure.

Dominant Energy Condition (DEC)

DEC is the WEC with an additional requirement: Tµνtµ must be a nonspacelike vector, i.e.,

Tµνt
µtν ≥ 0

and
TµνT

ν
λ t
µtλ ≤ 0.

For a perfect fluid, this means: ρ ≥ |p|. So in this case, the energy density cannot be negative and
greater than (or equal to) the pressure.

Null Dominant Energy Condition (NDEC)

Special case of the DEC, the NDEC only applies to null vectors. So we have

Tµν l
µlν ≥ 0,

where Tµν lν is a nonspacelike vector. In this case, negative densities are allowed so long as p = −ρ,
meaning that it does not exclude vacuum energy.

Strong Energy Condition (SEC)

The SEC states that

Tµνt
µtν ≥ 1

2
T λλ t

σtσ,

for any timelike vector tµ. It means that ρ+ p ≥ 0 and ρ+ 3p ≥ 0.
The SEC implies the NEC, excluding excessively large negative pressures. Also, it implies that

gravitation is attractive.

The figure in the next page illustrates all these energy conditions, including also a plot for the
w ≥ −1 case (w = p/ρ is the equation-of-state parameter, a useful concept in cosmology).
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Source: Carroll 2004, Spacetime and Geometry, Figure 4.3.
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