Oct 5th: Stress Energy Tensor

October 2018

1 Stress Energy Tensor

We want to find the analogous co-variant form of the Newtonain scalar field Equation: $\nabla^{2} \phi=4 \pi G \rho$. We choose to work in the slow-motion, weak-field, static metric tensor case. We begin by forming the relation $G_{\mu \nu}=\kappa T_{\mu \nu}$. Recall that the trace tells us: $G_{\mu}^{\mu}=-R_{\mu}^{\mu}=\kappa T_{\mu}^{\mu}$. Therefore, we can say something about the Ricci tensor, namely, $R_{\mu \nu}=\kappa\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)$

1.1 Point Particle

For a point particle, we write the stress energy tensor as:

$$
\begin{equation*}
T^{\mu \nu}=\left(\frac{m \delta^{3}\left(x^{\mu}-z^{\mu}(x)\right)}{\sqrt{g} \dot{t}}\right) U^{\mu} U^{\nu} \tag{1}
\end{equation*}
$$

Where \dot{t} is $\frac{d t}{d \tau}$ along the proper path. We call the factor in the parenthesis above as ρ so as to write the above equation in a neat form: $T_{\nu}^{\mu}=\rho U^{\mu} U_{\nu}$.

1.2 Difference between $T_{\mu \nu}, T_{\nu}^{\mu}, T^{\mu \nu}$

We point out that the dimensions of the stress energy tensor are different based on it's tensor type. That is, T_{ν}^{μ} and $T^{\mu \nu}$ have different dimensions. For example, T_{ν}^{μ} has dimensions of energy density. So when we calculate the trace of T as $\operatorname{Trace}\left(T_{\mu}^{\mu}\right)=T_{0}^{0}+T_{1}^{1}+T_{2}^{2}+T_{3}^{3}$, each term on the right hand side must each have the dimension of energy density.

In general, the 4 -velocity is given by $U^{\mu}=(c \dot{t}, \dot{x}, \dot{y}, \dot{z})$. To lowest order, $U^{0}=\dot{t} \sim 1$. That is, in the rest frame of the particle $U^{\mu}=(1,0,0,0)$. So, $T^{00}=\rho \dot{t} \dot{t}$ and $T^{11}=\rho \dot{x} \dot{x}$ where the signs on the right hand sides are positive. Now, notice we can write $T_{0}^{0}=-\rho c^{2} \dot{t}^{2}$. Similarily, $T_{1}^{1}=\rho \dot{x} \dot{x}=\rho v_{x}^{2}$. Finally $T_{00}=\rho c^{4} \dot{t}^{2}$. The point to take away from this is that T does not always have the same dimensions w.r.t number of indices that are up or down. Finally, we can now calcualte $R_{00}=T_{00}-\frac{1}{2} g_{00} T=\frac{\kappa}{2} \rho c^{4}$, where $g_{00}=-c^{2}-2 \phi$.

We write the Ricci tensor, as a contraction of the Riemann Curvature tensor, in terms of derivatives of the metric tensor as,

$$
\begin{equation*}
R_{00}=R_{0 i 0}^{i}=\partial_{i}\left(\frac{1}{2} g^{i \lambda}\left(\partial_{t} g_{\lambda 0}+\partial_{t} g_{0 \lambda}-\partial_{\lambda} g_{00}\right)\right) \tag{2}
\end{equation*}
$$

Notice, in our simplified case, we are working with a static metric tensor, i.e. all partial derivatives of the metric tensor w.r.t. coordinate time t, will vanish. This leads us with

$$
\begin{equation*}
R_{00}=-\frac{1}{2} \partial_{i} g^{i j} \partial_{j} g_{00}=-\frac{1}{2} \nabla^{2} g_{00}=\kappa \frac{1}{2} \rho c^{4} \tag{3}
\end{equation*}
$$

where $\nabla^{2} \phi=\frac{\kappa}{2} c^{4} \rho$, so $\kappa=\frac{8 \pi G}{c^{4}}$. This finishes our analogous calculation of the Newtonian scalar field equation with the following remarks: $G_{00}=\frac{8 \pi G}{c^{4}} T_{00}$ and $G_{i j}=\kappa T_{i j}$.

1.3 Einstein's Equations

We write the Einstein's Equations as

$$
\begin{equation*}
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu} \tag{4}
\end{equation*}
$$

We notice the above equation is symmetric w.r.t. the μ, ν indicies. This suggests that there are a total of 10 independent, highly non-linear, equations subject to the condition that $\nabla_{\mu} G^{\mu \nu}=0$ which gives us a total of 4 conditions. Recall that we have plenty of gauge freedom. So up to a coordinate transformation or gauge transformation, choosing 4 coordinates is enough to solve these equations.

1.3.1 Parallel with Maxwell's Equations

Maxwell	GR
A_{μ}	$\mathrm{g}_{\mu \nu}$
$\mathrm{F}_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}$	$\mathrm{R}_{\mu \nu \sigma}^{\rho} \sim \partial g_{\mu \nu}$
$\nabla_{\mu} F^{\mu \nu}=-J^{\nu}$	$\mathrm{G}_{\mu \nu}=\kappa T_{\mu \nu}$
$\epsilon_{\nu}^{\mu \nu \rho \sigma} F_{\rho \sigma}=0$	$\epsilon^{\tau \mu \nu} R_{\mu \nu \rho \sigma}=0$
$\nabla_{\nu} \nabla_{\mu} F^{\mu \nu}=0$	$\nabla_{\mu} R \nu \sigma \rho \tau+\nabla_{\sigma} R_{\mu \nu \rho \tau}+\nabla_{\nu} R_{\sigma \mu \rho \tau}=0$

