Oct 5th: Stress Energy Tensor

October 2018

1 Stress Energy Tensor

We want to find the analogous co-variant form of the Newtonain scalar field Equation: $\nabla^2 \phi = 4\pi G \rho$. We choose to work in the slow-motion, weak-field, static metric tensor case. We begin by forming the relation $G_{\mu\nu} = \kappa T_{\mu\nu}$. Recall that the trace tells us: $G^{\mu}_{\mu} = -R^{\mu}_{\mu} = \kappa T^{\mu}_{\mu}$. Therefore, we can say something about the Ricci tensor, namely, $R_{\mu\nu} = \kappa (T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T)$

1.1 Point Particle

For a point particle, we write the stress energy tensor as:

$$T^{\mu\nu} = \left(\frac{m\delta^3(x^\mu - z^\mu(x))}{\sqrt{g}\dot{t}}\right)U^\mu U^\nu \tag{1}$$

Where \dot{t} is $\frac{dt}{d\tau}$ along the proper path. We call the factor in the parenthesis above as ρ so as to write the above equation in a neat form: $T^{\mu}_{\nu} = \rho U^{\mu} U_{\nu}$.

1.2 Difference between $T_{\mu\nu}, T^{\mu}_{\nu}, T^{\mu\nu}$

We point out that the dimensions of the stress energy tensor are different based on it's tensor type. That is, T^{μ}_{ν} and $T^{\mu\nu}$ have different dimensions. For example, T^{μ}_{ν} has dimensions of energy density. So when we calculate the trace of T as $Trace(T^{\mu}_{\mu}) = T^0_0 + T^1_1 + T^2_2 + T^3_3$, each term on the right hand side must each have the dimension of energy density.

In general, the 4-velocity is given by $U^{\mu} = (c\dot{t}, \dot{x}, \dot{y}, \dot{z})$. To lowest order, $U^0 = \dot{t} \sim 1$. That is, in the rest frame of the particle $U^{\mu} = (1, 0, 0, 0)$. So, $T^{00} = \rho \dot{t}\dot{t}$ and $T^{11} = \rho \dot{x}\dot{x}$ where the signs on the right hand sides are positive. Now, notice we can write $T_0^0 = -\rho c^2 \dot{t}^2$. Similarly, $T_1^1 = \rho \dot{x}\dot{x} = \rho v_x^2$. Finally $T_{00} = \rho c^4 \dot{t}^2$. The point to take away from this is that T does not always have the same dimensions w.r.t number of indices that are up or down. Finally, we can now calcualte $R_{00} = T_{00} - \frac{1}{2}g_{00}T = \frac{\kappa}{2}\rho c^4$, where $g_{00} = -c^2 - 2\phi$.

We write the Ricci tensor, as a contraction of the Riemann Curvature tensor, in terms of derivatives of the metric tensor as,

$$R_{00} = R_{0i0}^{i} = \partial_{i} \left(\frac{1}{2} g^{i\lambda} \left(\partial_{t} g_{\lambda 0} + \partial_{t} g_{0\lambda} - \partial_{\lambda} g_{00}\right)\right)$$
(2)

Notice, in our simplified case, we are working with a static metric tensor, i.e. all partial derivatives of the metric tensor w.r.t. coordinate time t, will vanish. This leads us with

$$R_{00} = -\frac{1}{2}\partial_i g^{ij}\partial_j g_{00} = -\frac{1}{2}\nabla^2 g_{00} = \kappa \frac{1}{2}\rho c^4$$
(3)

where $\nabla^2 \phi = \frac{\kappa}{2} c^4 \rho$, so $\kappa = \frac{8\pi G}{c^4}$. This finishes our analogous calculation of the Newtonian scalar field equation with the following remarks: $G_{00} = \frac{8\pi G}{c^4} T_{00}$ and $G_{ij} = \kappa T_{ij}$.

1.3 Einstein's Equations

We write the Einstein's Equations as

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{4}$$

We notice the above equation is symmetric w.r.t. the μ, ν indices. This suggests that there are a total of 10 independent, highly non-linear, equations subject to the condition that $\nabla_{\mu}G^{\mu\nu} = 0$ which gives us a total of 4 conditions. Recall that we have plenty of gauge freedom. So up to a coordinate transformation or gauge transformation, choosing 4 coordinates is enough to solve these equations.

1.3.1 Parallel with Maxwell's Equations

Maxwell	GR
A_{μ}	${ m g}_{\mu u}$
$F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$	${ m R}^{ ho}_{\mu u\sigma}\sim\partial g_{\mu u}$
$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}$	$\dot{G}_{\mu\nu} = \kappa T_{\mu\nu}$
$\epsilon^{\mu\nu\rho\sigma}_{\nu}F_{\rho\sigma} = 0$	$\epsilon^{\tau\mu\nu\rho}R_{\mu\nu\rho\sigma} = 0$
$\nabla_{\nu}\nabla_{\mu}F^{\mu\nu} = 0$	$\nabla_{\mu}R\nu\sigma\rho\tau + \nabla_{\sigma}R_{\mu\nu\rho\tau} + \nabla_{\nu}R_{\sigma\mu\rho\tau} = 0$