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The Killing vector on a sphere is equal to (0,1)

L7 =(0,1) = p®

This is the Killing vector and its index is up.
To satisfy Killing’s equation, V(, K, = 0, we need to lower the index.

K, = (0,sin*0)

VK, +V,K,

Three sets of components; 66, 0¢, ¢o.
So we have

ngab = —sinf cosf

Fg)d) = Fge = cot

00 component:

Op Ky + de)Kg + F$9K¢ =0 Each term here is zero

¢¢ component:

Op Ky — F%Ke — F£¢K¢ =0 Again, each term here is zero

0¢ component:

Og Ky — F2¢K9 — F3¢K¢ + 0Ky — FZQKQ — F£9K¢ = 2sinfcosf —sinfcosf —sinfcost) =0
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L* = (—sin ¢, — cot f cos )
K, = (—sin¢, —sinf cosf)

To prove this using Killing’s theorem is not trivial. We proved it in a pretty trivial way here.
In 2D (ds* = dr?® + r2df?),
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In flat space all 20 components of R, are zero in any coordinate system.
Corollary: All 20 components are gauge invariant in flat space.
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There are three points to consider here.
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« Now we can write,
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Now consider
/\/—g dz o,V

We know how to use Stoke’s theorem in cartesian coordinates.
Covariantize to

/\/—_g d'z v,V = /d4x (V=g V")
%/\/—_gd4xg“”8“¢8y¢
- / d'z (8,7/—g 9" 9, ¢) 06
With insertion of \/—g it can be written

_ / NP (\/L__g B/=9 9", ¢>) 60

The inside of the parentheses is
1

vu(ngu ¢) = V#(VM) = NE au\/__g 90, =0



