Text Image: Department of Physics
UF Logo

PHZ 7097

Modern Astrophysics - Spring 2020

Lectures: MWF 9:35-10:25pm in NPB 1216

Instructor: Prof. Imre Bartos
                  Office:     NPB 2025
                  Email:     imrebartos (at) ufl.edu
                  Phone:    +1 (352) 392-9717

Office hours: Fridays 1pm-2pm or by appointment

Prerequisites: Undergraduate math (derivation, integration) and undergraduate physics is required.

Credits: 3.

Registration: You can register by yourself. This is a separate section (one out of 3 sections) of PHZ7097. The class is limited to 15 students.


PURPOSE OF COURSE: To introduce students to open questions in astrophysics and current research and observational efforts to address these questions. The students will become familiar with research areas that will help them keep track of new developments and, for majors, select the most relevant research topics in the future.

TOPICS COVERED: Today's astrophysics largely focuses on extreme cosmic processes whose observations recently became available due to modern, large-scale facilities such as the LIGO gravitational wave observatory, the Large Synoptic Survey Telescope, or the IceCube Neutrino Observatory. The course will focus on (i) compact objects such as black holes and neutron stars, (ii) emission processes by these objects, as well as (iii) relevant modern observational strategies and observatories. Topics include core-collapse supernovae, astrophysical particle acceleration, gamma-ray bursts, gravitational-wave emission, kilonovae, and multimessenger observations.

COURSE GOALS AND OBJECTIVES: The course will give you an understanding of some of the main, actively researched topics in astrophysics. It will give you an understanding of the frontiers, where the field is going, as well as some of the modern observational tools. Additionally, the course's objective is to prepare you for absorbing and communicating scientific work as researchers encounter it.

GRADING: The final grade will be based on classroom participation (30%), homework (30%) and a final presentation on an agreed-upon topic relevant to the course material (40%).


Week 1.     Stars' end

Possible ends of stellar life cycles, including white dwarfs, core collapse, and disintegration.

Week 2.     Neutron Stars

What neutron stars are, how they are formed, and their properties. Neutron star equation of state.

Week 3.     Black holes

What black holes are, how they are formed, and their properties. Schwarzschild radius, spin, charge, mass, hair.

Week 4.     Supernovae

Types, explosion mechanisms, emission properties, remnants.

Week 5.     Accretion

Gas accretion onto black holes or neutron stars. Origin of accreted gas, geometry (Bondi/disk).

Week 6.     Astrophysical particle acceleration

Relativistic outflows, their formation, and how they accelerate particles. Cosmic rays, gamma rays, high-energy neutrinos.

Week 7.     Gamma-ray bursts

History, properties, populations.

Week 8.     Afterglow emission

Origin, properties.

Week 9.     High-energy observatories

Most important observatories that detect cosmic rays, gamma rays, and high-energy neutrinos; observation principles.

Week 10.   The high-energy Universe

What has been observed, observational techniques, open questions. Cosmic rays, gamma rays, high-energy neutrinos.

Week 11.   Gravitational waves

Definition, detection, astrophysical production.

Week 12.   Compact binaries

Formation channels, properties, eccentricity.

Week 13.   Searching for gravitational waves

Search techniques, challenges.

Week 14.   Kilonovae

...and other emission from compact binary mergers.

Week 15.   Cosmology with gravitational waves

Week 16.   Multimessenger astrophysics and open questions

DISCLAIMER: This syllabus represents the Prof. Bartos' current plans and objectives. As we go through the semester, those plans may need to change to enhance the class learning opportunity. Such changes, communicated clearly, are not unusual and should be expected.