Lecture II.

Stellar birth, life and death

Imre Bartos
Department of Physics
Compact objects and their formation

Week 1. Stars' end. - Possible ends of stellar life cycles, including white dwarfs, core collapse, and disintegration.

Week 2. Neutron Stars. - What neutron stars are, how they are formed, and their properties. Neutron star equation of state.

Week 3. Black holes - What black holes are, how they are formed, and their properties. Schwarzschild radius, spin, charge, mass, hair.

Week 4. Supernovae - Types, explosion mechanisms, emission properties, remnants.
High-energy emission and its observation

Week 5. Accretion - Gas accretion onto black holes or neutron stars. Origin of accreted gas, geometry (Bondi/disk).

Week 6. Astrophysical particle acceleration - Relativistic outflows, their formation, and how they accelerate particles. Cosmic rays, gamma rays, high-energy neutrinos.

Week 7. Gamma-ray bursts - History, properties, populations.

Week 8. Afterglow emission - Origin, properties.

Week 9. High-energy observatories - Most important observatories that detect cosmic rays, gamma rays, and

Week 10. The high-energy Universe - What has been observed, observational techniques, open questions. Cosmic rays, gamma rays, high-energy neutrinos.
Gravitational waves – sources, detection, use

Week 11. Gravitational waves - Definition, detection, astrophysical production.

Week 12. Compact binaries - Formation channels, properties, eccentricity.

Week 13. Searching for gravitational waves - Search techniques, challenges.

Week 15. Cosmology with gravitational waves
Multimessenger astrophysics and questions at the frontier

Week 14. Kilonovae - ...and other emission from compact binary mergers.

Week 16. Multimessenger astrophysics and open questions
Logistics

- Course website: http://phys.ufl.edu/courses/phy7097/spring18/
- Main course requirement: final or final presentation
- Office hours: please email and we’ll set up a time
- Textbook: none

- Steve Eikenberry has a relevant course on Black Holes and Neutron Stars on Tuesdays and Thursdays
Outline

• Star formation
• metallicity
• Stellar evolution
• Hydrogen burning
• Zero age main sequence, HS diagram
• Stellar zoo (list all names)
Star formation

Origin:
- Molecular clouds
- Interstellar gas (MW: 1 particles / cm3)

Cloud collapses (gravity) and heats up (work)

Can be triggered:
- Galaxy collisions
- Supernova shocks
- Milky Way – arms have higher SF

Accreting Supermassive BHs drive relativistic jets that can limit SF.

Massive stars form in binaries (angular momentum)

HST image of Eagle Nebula.
Credit: NASA, Jeff Hester, and Paul Scowen (Arizona State U.)
Cosmic star formation rate

Peaks around $z \approx 2$

Non-uniform, higher in the past.

Needs to be taken into account when studying star formation / supernovae / BH formation / etc.

Depends on many things. E.g., less gas is available today.

\[
\psi(z) = 0.015 \frac{(1 + z)^{2.7}}{1 + [(1 + z)/2.9]^{5.6}} \ M_\odot \text{yr}^{-1} \text{Mpc}^{-3}
\]

Madau & Dickinson 2014 (1403.0007)
Initial mass function

Salpeter function (1955):

\[\xi(m) \Delta m = \xi_0 \left(\frac{m}{M_{\text{sun}}} \right)^{-2.35} \left(\frac{\Delta m}{M_{\text{sun}}} \right) \]

only applicable ~ above stellar mass

Substellar population is uncertain (see varying models).

Will be important for the distribution of stellar remnants (WD, NS, BH).

Will be important for the BH mass distribution (uncertain).
Not everyone will be a star...
Below $0.08 \, M$, pressure is too small for fusion.
→ Brown dwarfs

Stars are ~70% H, 30% He, and a trace of “metal.”
→ Hydrogen fusion.

Fusion produces heat that halts gravitational collapse.
→ Hydrostatic equilibrium.

Hertzsprung–Russell diagram
Stars stay on the same point for most of their lives.

When H starts running out stars move off of the main sequence.
Massive stars live fast and die young.

<table>
<thead>
<tr>
<th>Mass (solar masses)</th>
<th>Time (years)</th>
<th>Spectral type</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>3 million</td>
<td>O3</td>
</tr>
<tr>
<td>30</td>
<td>11 million</td>
<td>O7</td>
</tr>
<tr>
<td>10</td>
<td>32 million</td>
<td>B4</td>
</tr>
<tr>
<td>3</td>
<td>370 million</td>
<td>A5</td>
</tr>
<tr>
<td>1.5</td>
<td>3 billion</td>
<td>F5</td>
</tr>
<tr>
<td>1</td>
<td>10 billion</td>
<td>G2 (Sun)</td>
</tr>
<tr>
<td>0.1</td>
<td>1000s billions</td>
<td>M7</td>
</tr>
</tbody>
</table>

http://www.worldscientific.com/worldscibooks/10.1142/8573

Credit: ESO
White dwarfs – low mass (< 8-10 M_\odot) stars run out of fuel → no thermal pressure → shrink.

Giants – e.g. helium burning introduces different equilibrium: increased temperature → stars grow in size and redden.

Supergiants – from the heaviest stars. There are also hypergiants.
Stellar winds

Radiation pressure blows off gas/dust from the outer layers of stars.

Metallicity: fraction of elements heavier than He. Typically defined in comparison to Solar metallicity.

More metallicity \rightarrow more stellar winds.

Higher stellar mass \rightarrow more wind.

Winds will limit the end-of-life mass of massive stars, especially for high-metallicity stars.

Wolf-Rayet stars: massive stars that lost \simall of their hydrogen envelope to winds.

Population III (Pop III) stars: extremely massive stars only in the early universe (first stars), with no metals.
Chemical mixing

There can be convection within the star due to temperature difference / fast rotation / etc.

e.g. in a binaries can align orbit and spin \rightarrow fast spinning \rightarrow chemical mixing.

Can affect what is being fused, giant phase as well as stellar winds.
Death

Low mass stars – runs out of fuel \(\rightarrow\) radiation pressure reduced \(\rightarrow\) shrinks \(\rightarrow\) white dwarf

High mass stars – fusion down to iron \(\rightarrow\) iron core \(\rightarrow\) gravitational core collapse \(\rightarrow\) supernova / collapsar

Very high mass stars – high pressure \(\rightarrow\) gamma rays energetic for electron+positron pair production \(\rightarrow\) reduced pressure \(\rightarrow\) gravitational collapse \(\rightarrow\) pair-instability supernova

Very high mass stars – high pressure \(\rightarrow\) gamma rays energetic for photodisintegration \(\rightarrow\) reduced pressure \(\rightarrow\) gravitational collapse \(\rightarrow\) black hole

Infalling matter – needs to get rid of angular momentum \(\rightarrow\) relativistic jet
Supernova explosion

Collapsars

Beamed outflow (jet)

Remnant