PHY 6646 - Quantum Mechanics II - Spring 2020 Homework set \# 12, due April 8

1. Consider a particle of mass m moving in a potential $V(x)=-\frac{1}{2} \kappa x^{2}$, sometimes called the "Inverted Harmonic Oscillator".
i. Solve the classical equation of motion of such a particle for arbitrary initial conditions $x(0)$ and $\dot{x}(0) \equiv \frac{d x}{d t}(0)$, at $t=0$. Does the particle oscillate?
ii. What is the classical Lagrangian for this system? What variable p is canonically conjugate to x ? What is the classical Hamiltonian? Write Hamilton's equations of motion for $x(t)$ and $p(t)$.
iii. Write down the Hamiltonian for the quantum system. Define

$$
\begin{equation*}
a=\frac{1}{\sqrt{2}}\left(\frac{X}{\Delta}+i \frac{\Delta}{\hbar} P\right) \tag{0.1}
\end{equation*}
$$

where $\Delta=\sqrt{\frac{\hbar}{m \gamma}}$ with $\gamma=\sqrt{\frac{\kappa}{m}}$. What meaning does γ have with regard to the classical motion? Show that $\left[a, a^{\dagger}\right]=1$, and

$$
\begin{equation*}
H=-\frac{1}{2} \gamma \hbar\left(a a+a^{\dagger} a^{\dagger}\right) \tag{0.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
|n\rangle \equiv \frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle \tag{0.3}
\end{equation*}
$$

where the state $|0\rangle$ is defined by

$$
\begin{equation*}
a|0\rangle=0 \tag{0.4}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\psi_{0}(x) \equiv\langle x \mid 0\rangle=\frac{1}{\sqrt{\sqrt{\pi} \Delta}} e^{-\frac{1}{2}\left(\frac{x}{\Delta}\right)^{2}} \tag{0.5}
\end{equation*}
$$

Do the $|n\rangle$ for $n=0,1,2,3 \ldots$ form a complete orthonormal set of statevectors? Why?
iv. In the Heisenberg picture, what is the equation of motion for $a(t)$? Show that it is solved by

$$
\begin{equation*}
a(t)=\cosh (\gamma t) a(0)+i \sinh (\gamma t) a^{\dagger}(0) \tag{0.6}
\end{equation*}
$$

Consider the Heisenberg state $|\psi\rangle=|0\rangle$, and the operator $N(t) \equiv a^{\dagger}(t) a(t)$. Evaluate $\langle\psi| N(t)|\psi\rangle,\langle\psi| N(t)^{2}|\psi\rangle$ and the root mean square deviation $\delta N(t)=\sqrt{\left\langle N(t)^{2}\right\rangle-\langle N(t)\rangle^{2}}$ of $N(t)$ in that state.
v. In the Schrödinger picture, consider the state vector

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{n=0}^{\infty} c_{n}(t)|n\rangle \tag{0.7}
\end{equation*}
$$

where $|\psi(0)\rangle=|0\rangle$. Show that

$$
\begin{equation*}
a(-t)|\psi(t)\rangle=0 \tag{0.8}
\end{equation*}
$$

where $a(t)$ is the Heisenberg operator of part iv. Using Eq.(0.8), obtain a recursion relation between the coefficients $c_{n}(t)$. Show that the recursion relation implies that $c_{n}(t)=0$ for all n odd, and

$$
\begin{equation*}
c_{2 p}(t)=(i \tanh (\gamma t))^{p} \sqrt{\frac{(2 p-1)!!}{2^{p} p!}} c_{0}(t) \tag{0.9}
\end{equation*}
$$

for $n=2 p$. Show that the normalization condition $\langle\psi(t) \mid \psi(t)\rangle=1$ implies

$$
\begin{equation*}
c_{0}(t)=\frac{1}{\sqrt{\cosh (\gamma t)}} \tag{0.10}
\end{equation*}
$$

What is the probability that the system is in state $|n\rangle$ at time t. What is the average outcome of measuring $N=a^{\dagger} a$ at time t ? Is the result the same as in part iv?
2. Problem 21.2.2 in Shankar's book.

