PHY 6645 - Quantum Mechanics I - Fall 2018 Homework set # 6, due October 3

1. Let $H(\lambda)$ be the Hamiltonian of a system which depends explcitly upon a parameter λ . Consider the eigenvalues $E_n(\lambda)$ and eigenstates $|E_n(\lambda)| > 0$ of $H(\lambda)$. Show that

$$\langle E_n(\lambda)|\frac{dH}{d\lambda}|E_n(\lambda)\rangle = \frac{dE_n}{d\lambda}$$
 (0.1)

for all n.

2. a) Consider two linear operators A and B. Show that

$$e^{A}Be^{-A} = \sum_{n=0}^{\infty} \frac{1}{n!} [A, [A, \dots [A, B] \dots]]$$
 (0.2)

where $[A, [A, ...[A, B]...]] \equiv [A, [A, [A, B]]]$ for n = 3, and so on.

b) Show that

$$e^{\frac{i}{\hbar}x_0P}F(X,P)e^{-\frac{i}{\hbar}x_0P} = F(X+x_0,P)$$

$$e^{-\frac{i}{\hbar}p_0X}F(X,P)e^{\frac{i}{\hbar}p_0X} = F(X,P+p_0)$$
(0.3)

where X and P are canonically conjugate operators ($[X, P] = i\hbar$) and x_0 and p_0 are c-numbers.

3. A particle of mass μ and energy E is approaching a sudden potential drop V_0 . The potential is

$$V(x) = 0$$
 for $x < 0$
= $-V_0$ for $x > 0$. (0.4)

The particle comes in from the x < 0 region.

- a) What are the probabilities of reflection and transmission?
- b) Does a classical particle get reflected under such circumstances? Does the reflection probability of the quantum mechanical particle go to zero as $\hbar \to 0$? Why not? When do actual particles get reflected by potential drops?
 - 4. Problem 5.4.3 in Shankar's book.