Assignment \#9

Reading: Chapter 8 in Goldstein.

Problems: Due by the start of class on Monday, 10/28/19.
(1) Recall the higher derivative Lagrangian $L(q, \dot{q}, \ddot{q})$ of problem 1 on assignment \#2 whose Euler-Lagrange equation is,

$$
\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q}=0 .
$$

Because this system has four pieces of initial value data, it requires two canonical coordinates. They are usually taken to be,

$$
\begin{array}{lll}
Q_{1} \equiv q & , & P_{1} \equiv \frac{\partial L}{\partial \dot{q}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \ddot{q}}\right) \\
Q_{2} \equiv \dot{q} & , & P_{2} \equiv \frac{\partial L}{\partial \ddot{q}}
\end{array}
$$

Assume that the system is non-degenerate, that is, one can invert the equation for P_{2} to solve for \ddot{q} as a function $a\left(Q_{1}, Q_{2}, P_{2}\right)$. Legendre transformation gives the Hamiltonian,

$$
H \equiv \sum_{n=1}^{2} P_{n} \frac{d^{n} q}{d t^{n}}-L=P_{1} Q_{2}+P_{2} a\left(Q_{1}, Q_{2}, P_{2}\right)-L\left(Q_{1}, Q_{2}, a\left(Q_{1}, Q_{2}, P_{2}\right)\right)
$$

(a) Prove the Hamilton equation $\dot{Q}_{1}=\frac{\partial H}{\partial P_{1}}$ reproduces the definition of Q_{2} above.
(b) Prove the Hamilton equation $\dot{Q}_{2}=\frac{\partial H}{\partial P_{2}}$ reproduces the relation $\ddot{q}=a\left(Q_{1}, Q_{2}, P_{2}\right)$.
(c) Prove the Hamilton equation $\dot{P}_{2}=-\frac{\partial H}{\partial Q_{2}}$ reproduces the definition of P_{1} above.
(d) Prove the Hamilton equation $\dot{P}_{1}=-\frac{\partial H}{\partial Q_{1}}$ reproduces the Euler-Lagrange equation.
(e) Prove the Hamiltonian is conserved if the Lagrangian has no explicit time dependence.
(2) Recall the damped harmonic oscillator of problem 3 on assignment \#1 whose Lagrangian is,

$$
L=\frac{1}{2} e^{\gamma t}\left(m \dot{q}^{2}-k q^{2}\right) .
$$

(a) Find the canonical momentum and construct the Hamiltonian.
(b) Solve the Hamiltonian evolution equations for $Q(t)$ and $P(t)$ starting from $Q(0)$ and $P(0)$.
(c) Use your solutions to express the energy as a function of time, $Q(0)$ and $P(0)$.
(3) Recall the Lagrangian for a point particle $\vec{r}(t)$ of mass m and charge q which moves in pacetime dependent lectric potential V and vector potential \vec{A},

$$
L=-m c \sqrt{c^{2}-\|\dot{\vec{r}}\|^{2}}-q V(t, \vec{r}(t))+q \dot{\vec{r}} \cdot \vec{A}(t, \vec{r}(t)) .
$$

(a) Find the canonical momenta and invert to express the velocities in canonical form.
(b) Construct the Hamiltonian as a function of canonical variables.

