Assignment \#5

Reading: Complete Chapter 4 and begin Chapter 5 in Goldstein.
Problems: \quad Due by the start of class on Friday, 9/20/19.
(1) Recall that a general rotation matrix can be expressed as a rotation by angle Φ about an axis \widehat{n},

$$
A_{i j}=\left[\delta_{i j}-\widehat{n}_{i} \widehat{n}_{j}\right] \cos (\Phi)+\epsilon_{i j k} \widehat{n}_{k} \sin (\Phi)+\widehat{n}_{i} \widehat{n}_{j}
$$

Show that the time derivative of this general form obeys,

$$
\left(A^{T} \dot{A}\right)_{i j}=\epsilon_{i j k}\left[\widehat{n}_{k} \dot{\Phi}+\dot{\widehat{n}}_{k} \sin (\Phi)+\epsilon_{k \ell m} \widehat{n}_{\ell} \dot{\widehat{n}}_{m}[1-\cos (\Phi)]\right] .
$$

You might find the following identities to be useful,

$$
\widehat{n} \cdot \dot{\widehat{n}}=0 \quad, \quad a_{i} b_{j}-a_{j} b_{i}=\epsilon_{i j k}(\vec{a} \times \vec{b})_{k}
$$

(2) Consider a point particle of mass m which is stationary in a rotating frame with constant angular velocity $\vec{\omega}$.
(a) Show that the centrifugal force on the particle is minus the gradient of the centrifugal potential $V_{c}=-\frac{1}{2} m\|\vec{\omega} \times \vec{r}\|^{2}$.
(b) If the particle is on the surface of the Earth it experiences the gravitational potential energy of the Earth, which has a small quadrupole deformation,

$$
V_{g}=-\frac{m M_{E} G}{r}\left\{1-J_{2}\left[\frac{3}{2}(\widehat{\omega} \cdot \widehat{r})^{2}-\frac{1}{2}\right]\left(\frac{R_{E}}{r}\right)^{2}\right\} .
$$

Here $J_{2} \simeq .001083, R_{E}$ is the Earth's equatorial radius and M_{E} is the Earth's mass. Water follows a surface of constant total potential energy which is known as the geoid. Solve for the geoid's radius at general polar angle, $R(\theta)$, to first order in the small parameters J_{2} and $\left(\omega^{2} R_{E}^{3}\right) /\left(G M_{E}\right)$ and compute the numerical value of the difference of $R(\theta)$ from its largest to its smallest values.
(c) Derive a first-order expression for the acceleration, $g(\theta)$, due to the combined potential, $V_{g}+V_{c}$ and compute the numerical value of its largest variation.
(3) Consider a symmetrical top consisting of a solid cone of radius r and height a, joined on its circular face to a solid cylinder of radius r and height b. Both the cone and the cylinder have the same uniform mass density ρ_{0}.
(a) What is the top's mass?
(b) What is the top's center of mass assuming its axis of rotation is along the $+\widehat{z}$ axis?
(c) What is the moment of inertia tensor $I_{i j}$ taking the apex of the cone to be the origin?
(d) What are the eigenvalues and eigenvectors of $I_{i j}$?

