Assignment \#4

Reading: Begin Chapter 4 in Goldstein.

Problems: \quad Due by the start of class on Monday, $9 / 16 / 19$.
(1) Consider a particle of mass m which slides, without rolling and without friction, along the paraboloid of rotation $z=k\left(x^{2}+y^{2}\right)$ in the Earth's uniform gravitational field.
(a) Express the Lagrangian using generalized coordinates.
(b) Reduce the system to a 1-dimensional problem.
(c) What is the condition for circular motion?
(d) Suppose the motion is almost circular. What is the period of small oscillations about circular motion?
(2) Recall $\epsilon_{i j k}$, the Levi-Civita density which Goldstein defines on page 169. In addition to its use for representing cross products, the Levi-Civita density also facilitates the beautiful representation for a general rotation which Goldstein gives in eqn (4.62') on page 170. This representation involves writing the rotation matrix $R_{i j}$ as the exponential of an infinitesimal rotation $\delta R_{i j}=\Phi \epsilon_{i j k} \widehat{n}_{k}$,

$$
R_{i j}=\exp [\delta R]_{i j} \equiv \delta_{i j}+\sum_{n=1}^{\infty} \frac{1}{n!}\left[\delta R^{n}\right]_{i j}
$$

In this problem you will derive this representation.
(a) Show that the square of δR is,

$$
\left[\delta R^{2}\right]_{i j}=\delta R_{i k} \delta R_{k j}=-\Phi^{2}\left[\delta_{i j}-\widehat{n}_{i} \widehat{n}_{j}\right]
$$

(b) Show that the cube of δR is,

$$
\left[\delta R^{3}\right]_{i j}=-\Phi^{3} \epsilon_{i j k} \widehat{n}_{k}
$$

(c) Use results (a) and (b) to derive explicit relations for $\left[\delta R^{2 n}\right]_{i j}$ and for $\left[\delta R^{2 n+1}\right]_{i j}$.
(d) Break the sum over n upon into even and odd powers and use the result of (c) to derive the final result,

$$
R_{i j}=\left[\delta_{i j}-\widehat{n}_{i} \widehat{n}_{j}\right] \cos (\Phi)+\epsilon_{i j k} \widehat{n}_{k} \sin (\Phi)+\widehat{n}_{i} \widehat{n}_{j} .
$$

(e) Evaluate each of the three terms in the final representation (part d above) for the special cases of $\widehat{n}=\widehat{x}, \widehat{y}, \widehat{z}$.
(3) The Levi-Civita density is also useful in representing determinants and matrix inverses. To see this, suppose that $M_{i j}$ is a general 3×3 matrix.
(a) Use the rules for making a column expansion of the determinant to show that,

$$
\epsilon_{i j k} M_{i \ell} M_{j m} M_{k n}=\operatorname{det}(M) \epsilon_{\ell m n}
$$

(b) Use the rules for making a row expansion of the determinant to show that,

$$
\epsilon_{\ell m n} M_{i \ell} M_{j m} M_{k n}=\operatorname{det}(M) \epsilon_{i j k}
$$

(c) Use (a) or (b), with the $B A C-C A B$ rule, to show,

$$
\epsilon_{i j k} \epsilon_{\ell m n} M_{i \ell} M_{j m} M_{k n}=3!\operatorname{det}(M)
$$

(d) Show that the following matrix gives the left and right inverse of $M_{i j}$,

$$
\left[M^{-1}\right]_{\ell i}=\frac{\epsilon_{i j k} \epsilon_{\ell m n} M_{j m} M_{k n}}{2!\operatorname{det}(M)}
$$

