## Assignment \#3

Reading: Complete Chapter 3 in Goldstein.
Problems: $\quad$ Due by the start of class on Monday, 9/9/19.
(1) Consider the Keplerian orbit,

$$
r(\phi)=\frac{c}{1+\epsilon \cos (\phi)} .
$$

(a) For the case $0<\epsilon<1$ show that the equation can be expressed in Cartesian coordinates as,

$$
\left(\frac{x+d}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

and find the constants $a, b$ and $d$ in terms of $\epsilon$ and $c$.
(b) For the case of $\epsilon=1$ show that the orbit describes a parabola in Cartesian coordinates and find the intercepts on the $x$ and $y$ axes.
(c) For the case $1<\epsilon<\infty$ show that the equation can be expressed in Cartesian coordinates as,

$$
\left(\frac{x+d}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1
$$

and find the constants $a, b$ and $d$ in terms of $\epsilon$ and $c$.
(2) A particle of mass $m$ moves in potential $V(r)=k / r$, where $k<0$. This problem compares parabolic and circular orbits with the same angular momentum $L$.
(a) What is the ratio of the perihelion of the parabolic orbit to the radius of the circular orbit?
(b) What is the ratio of the speed of a particle in the parabolic orbit to the speed in the circular orbit when the particles have the same radius?
(3) Consider a particle of mass $m$ which moves in the Yukawa potential,

$$
V(r)=-\frac{k}{r} \exp \left[-\frac{r}{a}\right]
$$

where both $k$ and $a$ are positive constants.
(a) Reduce the equations of motion to the equivalent one-dimensional problem.
(b) Discuss the nature of orbits for different values of the energy and angular momentum.
(c) Suppose the orbit is nearly circular with radius $R$. Show that the apsides advance approximately $\pi R^{2} / a^{2}$ per revolution.

