Assignment \#2

Reading: Complete Chapter 2 and begin Chapter 3 in Goldstein.
Problems: \quad Due (in my office or mailbox) by noon on Tuesday, $9 / 3 / 19$.
(1) Consider a point particle whose position is $q(t)$ and whose Lagrangian depends upon second as well as first time derivatives, $L(q, \dot{q}, \ddot{q}, t)$.
(a) Use Hamilton's Principle to find the Euler-Lagrange equation.
(b) Consider the energy function,

$$
E=\dot{q}\left[\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}}\right]+\ddot{q} \frac{\partial L}{\partial \ddot{q}}-L .
$$

Use the Euler-Lagrange equation to show that E is constant if the Lagrangian has no explicit dependence upon time.
(c) The energy defined above can depend in a complicated way upon q, \dot{q} and \ddot{q}, but it has a very simple dependence upon the 3rd time derivative of q. Exhibit this dependence.
(2) Consider the action functional,

$$
S[q]=\int_{0}^{T} d\left[\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} k q^{2}\right]
$$

(a) Recall the theorem that any function $q(t)$ which obeys $\dot{q}(0)=0=\dot{q}(T)$ can be expanded in a Fourer cosine sieries,

$$
q(t)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi t}{T}\right) .
$$

Express $S[q]$ as a function of the Fourier coefficients a_{n}.
(b) Use Hamilton's Principle to derive equations for the coefficients a_{n}.
(c) Substitute the Fourier series expansion for $q(t)$ into the usual Euler-Lagrange equation and use the independence of the Fourier coefficents to infer equations for the a_{n}.
(3) Suppose a particle of mass m is subject to a central force such that its orbit is a perfect circle of radius R which passes through the origin $(r=0)$ of the central potential $V(r)$.
(a) Let $\alpha(t)$ represent the angle of the particle's orbit around the orbital center. What is the angular momentum in terms of m, R, α and $\dot{\alpha}$?
(b) What is the energy in terms of the same variables?
(c) Use the fact that both the angular momentum L and the energy E are constant to show that the potential must take the form $V(r)=\frac{k}{r^{4}}$, and find the constant k in terms of m, R, L and E.
(d) What is the particle's oribital period?

