Assignment \#12

Reading: Chapter 12 in Goldstein.
Problems: \quad Due by the start of class on Monday, 11/18/19.
(1) One end of a uniform rod of length 2ℓ and mass m rests against a smooth horizontal floor, with the other end leaning against a smooth vertical surface. If the rod moves under the influence of gravity, with its ends in contact with the two frictionless surfaces, use the Hamilton-Jacobi equations to reduce the problem to quadratures.
(2) Consider a 3-dimensional particle of mass m which moves a conservative force. Set up the Hamilton-Jacobi equation in ellipsoidal coordinates u, v and ϕ defined by transforming from cylindrical coordinates,

$$
\rho=a \sinh (v) \sin (u) \quad, \quad z=a \cosh (v) \cos (u)
$$

(a) For what forms of the potential $V(u, v, \phi)$ is the equation separable?
(b) Reduce to quadratures the case for which the potential is caused by the gravitational force of masses m_{1} and $m_{2} \neq m_{1}$, which are fixed on the z-axis at $z= \pm a$.
(3) This problem concerns 2-dimensional motion in the uniform gravitational field of the Earth where the y coordinate describes up and down, and the x coordinate describes left and right. Consider a particle of mass m which is constrained to move on the curve,

$$
x(\lambda)=\ell(2 \lambda+\sin (2 \lambda)) \quad, \quad y(\lambda)=\ell(1-\cos (2 \lambda))
$$

Use action-angle variables to find the frequency of oscillation for all initial conditions such that the parameter λ always obeys $\lambda \leq \frac{1}{4} \pi$.

