Assignment \#10

Reading: Chapter 9 in Goldstein.
Problems: \quad Due by the start of class on Monday, 11/04/19.
(1) Consider a system with Hamiltonian $H\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$.
(a) Suppose we make the point transformation $Q_{1}=q_{1}^{2}$ and $Q_{2}=q_{1}+q_{2}$. What are the most general transformations for the new momenta P_{1} and P_{2} such that the overall transformation is canonical?
(b) Apply your result to the Hamiltonian,

$$
H=\frac{a}{2}\left(\frac{p_{1}-p_{2}}{2 q_{1}}\right)^{2}+b p_{2}+c\left(q_{1}+q_{2}\right)^{2}
$$

where a, b and c are constants, to find a system in which Q_{1} and Q_{2} are ignorable.
(c) Use your result for (b) to obtain the full initial value solutions for $q_{1}(t), q_{2}(t), p_{1}(t)$ and $p_{2}(t)$.
(2) This problem concerns a nonrelativistic particle of mass m moving in a constant magnetic field $\vec{B}=B_{0} \widehat{z}$.
(a) Show that the magnetic field derives from the vector potential $\vec{A}=\frac{1}{2} B_{0}(-y \widehat{x}+x \widehat{y})$.
(b) Write down the Lagrangian for this system and find the Hamiltonian.
(c) Prove that the following transformation is canonical where α is an arbitrary constant:

$$
\begin{array}{ll}
x=\frac{1}{\alpha}\left(\sqrt{2 P_{1}} \sin \left(Q_{1}\right)+P_{2}\right) \quad, \quad p_{x}=\frac{\alpha}{2}\left(\sqrt{2 P_{1}} \cos \left(Q_{1}\right)-Q_{2}\right) . \\
y=\frac{1}{\alpha}\left(\sqrt{2 P_{1}} \cos \left(Q_{1}\right)+Q_{2}\right) \quad, \quad & p_{y}=\frac{\alpha}{2}\left(-\sqrt{2 P_{1}} \sin \left(Q_{1}\right)+P_{2}\right) .
\end{array}
$$

(d) Make the transformation with an appropriate choice of α to make the new Hamiltonian cyclic in Q_{1} and Q_{2}.
(e) Write down the general initial value solution for $x(t)$ and $y(t)$ in terms of x_{0}, \dot{x}_{0}, y_{0} and \dot{y}_{0}.
(3) Consider a system whose Hamiltonian is $H=\frac{1}{2 q^{2}}+\frac{1}{2} p^{2} q^{4}$.
(a) What are the equations of motion for $q(t)$?
(b) Find a canonical transformation to $K=\frac{1}{2} P^{2}+\frac{1}{2} Q^{2}$.
(c) Show that the general initial value solution for (b) obeys (a).

