Exam #1

- (1) Consider two particles of masses $m_1 = \frac{1}{3}M$ and $m_2 = \frac{2}{3}M$ which are attracted to one another by a potential $V(r) = \frac{1}{2}kr^2$ which depends on the square of the distance r between them.
 - (a) What is the reduced mass? (16 points)
 - (b) Reduce this system to a 1-dimensional problem for fixed angular momentum L and energy E. (16 points)
 - (c) What are the turning points? (16 points)
 - (d) Find the orbit $r(\phi)$. (16 points) It might help to change variables from r to $v = r^{-2}$, and to recall the integral

$$\int \frac{dv}{\sqrt{-v^2 + 2av - b}} = \sin^{-1} \left(\frac{v - a}{\sqrt{a^2 - b}} \right).$$

- (e) Write down an integral (but do not evaluate it) for the orbital period. (16 points)
- (2) Consider an ellipsoid of constant density ρ_0 which is bounded by the surface (in cylidrical coordinates),

$$\left(\frac{\rho}{a}\right)^2 + \left(\frac{z}{b}\right)^2 = 1 \; ,$$

where a > b are positive constants.

- (a) What is the total mass M and the center of mass \vec{R} ? (17 points)
- (b) What is the momentum of inertia tensor I_{ij} ? (17 points)
- (c) What are the principle axes and the associated moments? (17 points)
- (d) Suppose the angular velocity along the \hat{z} axis is a constant ω (but the velocities in the x and y directions are not necessarily constant) and that there is no torque. What is the rate of precession? (17 points)
- (e) What is the angular momentum vector in the body frame? (17 points)
- (3) A massless spring, of force constant k_1 and unstrechted length ℓ_1 , is suspended from the ceiling with a mass m_1 hanging from its lower end. A second spring, of force constant k_2 and unstretched length ℓ_2 , is suspended from m_1 , with a mass m_2 attached to its lower end. In this problem you are to include both the gravitational force and the spring force.
 - (a) Let $d_1(t)$ and $d_2(t)$ be the distances of the two masses from the ceiling. What is the Lagrangian? (16 points)
 - (b) What are the equilibrium values of d_1 and d_2 ? (16 points)
 - (c) What are the characteristic frequencies of this system? (16 points)
 - (d) What are the eigenvectors associated with each frequency? (16 points)
 - (e) Supposing that each mass is released from rest, what initial values $d_1(0)$ and $d_2(0)$ would lead to a solution oscillating at the samller of the two frequencies in part (c)? (16 points)