PHY 6246

October 2, 2019

Exam #1

(1) Consider particles of masses m_1 and m_2 that interact through the central potential which includes the lowest order general relativistic correction,

$$V(r) = -\frac{Gm_1m_2}{r} \left\{ 1 + \frac{3G(m_1 + m_2)}{rc^2} \right\} \,,$$

where c is the speed of light. Do not include special relativistic effects, just treat this as a central force problem.

- (a) What are the total mass and the reduced mass? (16 points)
- (b) Reduce this system to a 1-dimensional problem for fixed angular momentum L and energy E. (16 points)
- (c) What are the turning points? (16 points)
- (d) Find the orbit $r(\phi)$. (16 points) It might help to change variables from r to $u = r^{-1}$, and to recall the integral

$$\int \frac{du}{\sqrt{-u^2 + 2au - b}} = \sin^{-1} \left(\frac{u - a}{\sqrt{a^2 - b}} \right) \,.$$

- (e) Find the advance of the apsides to lowest order about a circular orbit. (16 points)
- (2) Consider a rigid body composed of two uniform rods, each of mass m and length L. The first rod lies on the x axis from x = 0 to x = L; the second rod lies on the y axis from y = 0 to y = L. Note that there are still **three** spatial dimensions, even though these rods both lie at z = 0.
 - (a) What is the total mass M and the center of mass \vec{R} ? (17 points)
 - (b) What is the momentum of inertia tensor I_{ij} about its center? (17 points)
 - (c) What are the principle axes and the associated moments? (17 points)
 - (d) Suppose the angular velocity along the \hat{z} axis is held constant at ω by an applied torque, but that the velocities in the x and y directions (of the principal axes) are not constant, and that there is no torque in the \hat{x} or \hat{y} direction. What is the rate of precession? (17 points)
 - (e) What is the angular momentum vector in the body frame? (17 points)
- (3) Consider a linear, triatomic molecule which is formed of masses (from left to right) $m_1 = m, m_2 = 2m$ and $m_3 = 3m$. The spring joining m_1 and m_2 has spring constant k and unstretched length a. The spring joining m_2 and m_3 has spring constant 3k and unstretched length b.
 - (a) What is the Lagrangian? (16 points)
 - (b) What are the equilibrium positions? (16 points)
 - (c) What are the characteristic frequencies? (16 points)
 - (d) What are the eigenvectors associated with each frequency? (16 points)
 - (e) Suppose that each mass is released from rest with $x_1(0) = L$, $x_2(0) = 2L$ and $x_3(0) = 3L$. What is the solution for $x_1(t)$? (16 points)