Exam \#1

(1) Consider particles of masses m_{1} and m_{2} that interact through the central potential which includes the lowest order general relativistic correction,

$$
V(r)=-\frac{G m_{1} m_{2}}{r}\left\{1+\frac{3 G\left(m_{1}+m_{2}\right)}{r c^{2}}\right\},
$$

where c is the speed of light. Do not include special relativistic effects, just treat this as a central force problem.
(a) What are the total mass and the reduced mass? ($\mathbf{1 6}$ points)
(b) Reduce this system to a 1-dimensional problem for fixed angular momentum L and energy E. (16 points)
(c) What are the turning points? (16 points)
(d) Find the orbit $r(\phi)$. (16 points) It might help to change variables from r to $u=r^{-1}$, and to recall the integral

$$
\int \frac{d u}{\sqrt{-u^{2}+2 a u-b}}=\sin ^{-1}\left(\frac{u-a}{\sqrt{a^{2}-b}}\right) .
$$

(e) Find the advance of the apsides to lowest order about a circular orbit. (16 points)
(2) Consider a rigid body composed of two uniform rods, each of mass m and length L. The first rod lies on the x axis from $x=0$ to $x=L$; the second rod lies on the y axis from $y=0$ to $y=L$. Note that there are still three spatial dimensions, even though these rods both lie at $z=0$.
(a) What is the total mass M and the center of mass \vec{R} ? (17 points)
(b) What is the momentum of inertia tensor $I_{i j}$ about its center? ($\mathbf{1 7}$ points)
(c) What are the principle axes and the associated moments? (17 points)
(d) Suppose the angular velocity along the \widehat{z} axis is held constant at ω by an applied torque, but that the velocities in the x and y directions (of the principal axes) are not constant, and that there is no torque in the \widehat{x} or \widehat{y} direction. What is the rate of precession? ($\mathbf{1 7}$ points)
(e) What is the angular momentum vector in the body frame? (17 points)
(3) Consider a linear, triatomic molecule which is formed of masses (from left to right) $m_{1}=m, m_{2}=2 m$ and $m_{3}=3 m$. The spring joining m_{1} and m_{2} has spring constant k and unstretched length a. The spring joining m_{2} and m_{3} has spring constant $3 k$ and unstreched length b.
(a) What is the Lagrangian? (16 points)
(b) What are the equilibrium positions? (16 points)
(c) What are the characteristic frequencies? (16 points)
(d) What are the eigenvectors associated with each frequency? (16 points)
(e) Suppose that each mass is released from rest with $x_{1}(0)=L, x_{2}(0)=2 L$ and $x_{3}(0)=3 L$. What is the solution for $x_{1}(t) ?(16$ points)

