
Identical Particles 

For a single particle in a box we found 𝑍1 =
𝑉

𝜆𝐷
3   where the de Broglie wavelength 

𝜆𝐷 = (
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)
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From this the entropy is calculated as     𝑆 = 𝑘𝐵 [𝑙𝑛𝑉 +
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For N particles 𝑍𝑁 = 𝑍1
𝑁 = (

𝑉

𝜆𝐷
3 )

𝑁

 

And for N particles 𝑆𝑁 = 𝑁𝑘𝐵 [𝑙𝑛𝑉 +
3

2
𝑙𝑛 (

𝑚𝑘𝐵𝑇

2𝜋ℏ2 ) +
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𝑁𝑙𝑛𝑉 = 𝑁𝑙𝑛𝑁 + 𝑁𝑙𝑛 (
𝑉

𝑁
) 

For fixed density N/V,    S contains 𝑁𝑙𝑛𝑁 

Paradox: S not extensive (should scale as N) 

This problem arises because we did not account for properties of identical particles, 

 

Consider wave function    𝜓(𝑥1, 𝑥2)     for particle 1 at x1 and particle 2 at x2 

Now exchange particles and the resulting wave function is 𝜓(𝑥2, 𝑥1) 

Meaningful entity are the probabilities |𝜓(𝑥1, 𝑥2)|2 

If particles are indistinguishable MUST have |𝜓(𝑥1, 𝑥2)|2 = |𝜓(𝑥2, 𝑥1)|2 

And thus 𝜓(𝑥1, 𝑥2) = 𝑒𝑖𝛼𝜓(𝑥2, 𝑥1)   For a second exchange must return to same state thus  

𝑒2𝑖𝛼 = 1 

TWO CHOICES 𝑒𝑖𝛼 = ±1 

Wave functions are either symmetric (+1)   -- bosons 

or antisymmetric (-1)  -- fermions 

This changes how we are allowed to count available states 

If we ignore exchange symmetry, 

𝜒1 = 𝜑𝑖(𝑥1)𝜑𝑗(𝑥2)  and     𝜒2 = 𝜑𝑖(𝑥2)𝜑𝑗(𝑥1) have same Energy 𝐸 = 𝜀𝑖 + 𝜀𝑗 

And must not count both states. Need to construct properly symmetrized wave functions and count 

states using in each energy eigenstate. 

𝜓𝑖 = |𝑛1, 𝑛1, 𝑛1 … . . > 



Energy  𝐸𝑖 = 𝑛1𝑒1 + 𝑛2𝑒2 + 𝑛3𝑒3 + ⋯ n an integer but…. 

Fermi wave functions must be antisymmetric 

e.g.  for two particles   Ψ = 𝜑𝑖(𝑥1)𝜑𝑗(𝑥2) − 𝜑𝑗(𝑥2)𝜑𝑗(𝑥1) is correctly antisymmetric with particle 

exchange. Note that Ψ   vanishes if  𝑖 = 𝑗 

NO TWO PARTICLES (FERMIONS) CAN OCCUPY THE SAME STATE. 

Only possible values are for n = 0 or 1. 

Changes how the accessible sates are counted. 

General fermion wave function can be expressed as determinant of single particle states 

 

||

𝜑𝑖(𝑥1)    𝜑𝑗(𝑥1)      𝜑𝑘(𝑥1)

𝜑𝑖(𝑥2)    𝜑𝑗(𝑥2)      𝜑𝑘(𝑥2)

𝜑𝑖(𝑥3)    𝜑𝑗(𝑥3)      𝜑𝑘(𝑥13)
   

|| 

For bosons no such restriction can have many particles in same state. 

 

Book Example 

Distribute 2 particles over 3 energy levels 0, e, 2e 

2e    --------     --------     ----x--     --------    -----x---     ---xx--  

e       --------     ---x---     -------     ---xx---    ---x----      ------- 

0      --xx----     ----x--     ----x--     --------    --------       ------- 

 

Bosons  𝑍𝑏𝑜𝑠𝑜𝑛 = 1 + 𝑒−𝛽𝜖 + 2𝑒−2𝛽𝜖 + 𝑒−3𝛽𝜖 + 𝑒−4𝛽𝜖 

Fermions (no double occupancy) 

𝑍𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = 𝑒−𝛽𝜖 + 𝑒−2𝛽𝜖 + 𝑒−3𝛽𝜖 

Have to examine each case in detail to calculate Z 

 ? How to treat case of N particles 

Assume can factorize 𝑍𝑁 = (𝑍1)𝑁   but this over counts states 

e.g. 𝑍2 = (∑ 𝑒−𝛽𝜀𝑖
𝑖 )(∑ 𝑒−𝛽𝜀𝑖

𝑖 )  includes terms 𝑒−𝛽(𝜀1+𝜀2)  and 𝑒−𝛽(𝜀2+𝜀1)  i.e. counted same energy 

state twice 

Crude approximation is to divide by N!.   Not perfect but OK for independent particles 



For     𝑍𝑁 = (𝑍1)𝑁/𝑁!     Helmholtz free energy  𝐹 = −𝑁𝑘𝐵𝑇{𝑙𝑛𝑍1 − 𝑙𝑛𝑁 + 1} 

 

For single particle in 3D, translation degrees of freedom give 

𝑍1 = 𝑉 (
𝑚𝑘𝐵𝑇

2𝜋ℏ2
)

3
2⁄

 

Therefore  

𝐹 = −𝑁𝑘𝐵𝑇 {𝑙𝑛𝑉 +
3

2
𝑙𝑛 (

𝑚𝑘𝐵𝑇

2𝜋ℏ2
) + 1 − 𝑙𝑛𝑁} 

 

𝐹 = −𝑁𝑘𝐵𝑇 {𝑙𝑛
𝑉

𝑁
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2
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Now we like this because for constant density (N/V) it is extensive 

Entropy 

𝑆 = −
𝜕𝐹

𝜕𝑇
=  𝑁𝑘𝐵𝑇 {𝑙𝑛

𝑉

𝑁
+
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2
} 

 

Sackur-Tetrode formula 

 

Problems 

6.3  Four  particle states with energy:     0(doubly degenerate),   e,     2e    and 3e 

Distribute 2 identical particles 

(a) fermions 

2e    -----     ----     --x--     ----     ---x--    -----x---      

e      -----     --x--     ----    ---x--    -----        ---x--  

o     --x--     ----       ----     ---x---    ---x-      ------- 

0      --x--    ---x--     --x--     -----    -----       ------- 

𝑍𝐹 = 1 + 2𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀 + 𝑒−3𝛽𝜀 

(b) bosons need to add terms with double occupancy 

𝑍𝐵 = 𝑍𝐹 + 2𝑒0 + 𝑒−2 + 𝑒−4 = 3 + 2𝑒−𝛽𝜀 + 3𝑒−2𝛽𝜀 + 𝑒−3𝛽𝜀 + 𝑒−4𝛽𝜀 
 

 

 



6.6    Ortho-para H2 

   e 

 

0 

Para:  ground state L=0   n molecules 

Ortho:  excited state e   L=1   3-fold degenerate    N-n molecules 

Number of ways of distributing N with n ortho   𝑊 =
𝑁!

𝑛!(𝑁−𝑛)!
      If ortho singly degenerate. 

But extra multiplicity of n 3-fold degenerate states =3𝑛 

𝑊𝑡𝑜𝑡𝑎𝑙 =
𝑁!

𝑛! (𝑁 − 𝑛)!
3𝑛 

Free energy    𝑈 = 𝑛 

Entropy 

      𝑆 = 𝑘𝐵𝑙𝑛𝑊 = 𝑘𝐵{𝑁𝑙𝑛𝑁 − 𝑛𝑙𝑛(𝑛) − (𝑁 − 𝑛) ln(𝑁 − 𝑛) + 𝑛𝑙𝑛3} 
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𝑇
=

𝜕𝑆
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=
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𝑁 − 𝑛

𝑛
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𝜀
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= 𝑙𝑛 [3 (

𝑁
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𝑒
𝜀
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𝜀
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𝑁

𝑛
          

𝑛

𝑁
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High temperature (300 K)  bottle compressed H2 is 75% ortho 

Low  temperature:  0% ortho and 100% para.  Note if production of H2 creates 75% ortho, lose a lot of 

liquid H2 in transport because the ortho to para decay releases a lot of heat (comparable to latent heat 

of evaporation). E(ortho-para) ~ 110 K.  After production the liquefiers are constructed to have beds of 

Fe3O4 to convert ortho to para before shipping. 

 

Problem 6.7 

Spin ½ particles in magnetic field.  Particles have magnetic moment .  Two spin states with energy +B 

and -B. 

Partition function for single particle 𝑍1 = 𝑒
−

𝜇𝐵

𝑘𝐵𝑇 + 𝑒
+

𝜇𝐵

𝑘𝐵𝑇 = 2𝑐𝑜𝑠ℎ
𝜇𝐵

𝑘𝐵𝑇
 



For N particles  𝑍𝑁 = (𝑍1)𝑁 

Free energy 𝐹 = −𝑘𝐵𝑇𝑙𝑛𝑍𝑁 = −𝑁𝑘𝐵𝑇 {ln 2 + ln [𝑐𝑜𝑠ℎ
𝜇𝐵

𝑘𝐵𝑇
]} 

Entropy    𝑆 = −
𝜕𝐹

𝜕𝑇
=  𝑁𝑘𝐵 {ln 2 + ln [𝑐𝑜𝑠ℎ

𝜇𝐵

𝑘𝐵𝑇
]} + 𝑁𝑘𝐵𝑇 (−

𝜇𝐵

𝑘𝐵𝑇2 𝑡𝑎𝑛ℎ (
𝜇𝐵

𝑘𝐵𝑇
)) 

S is a function only of B/T.   

 If isolate a paramagnet, B/T remains constant (no heat leaks). Start at 1K in 10T and demagnetize to 10 

gauss, T will decrease to 100K. Usually keep final field higher to have a larger heat capacity and can 

stay colder longer in face of inevitable heat leaks (~ nW)  

 

 

 

 

 


