
PHYS620 Fall 2018 Homework 3 Solutions 
 
1. A bead of mass m slides freely on a circular 
wire of radius R. The wire rotates about a 
vertical diameter with constant angular velocity, 
ω. Let the position of the mass have spherical 
polar coordinates ( ), , ,r θ φ  where θ is the angle 

between the position vector and the vertical 
rotation axis, as shown in the figure. By using 
two equations of constraint, find expressions for 
the force exerted by the wire on the bead.  
 
Solution: The kinetic energy of a free particle in 
spherical polar co-ordinates is 

 ( )2 2 2 2 2 21 sin .
2

T m r r rθ θφ= + +� ��   

The gravitational potential energy of the bead is 
 cos .U mgr θ=   
Hence, the Lagrangian is 

 ( )2 2 2 2 2 21 sin cos .
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L T U m r r r mgrθ θφ θ= − = + + −� ��   

 
The two equations of constrained are 
 ( )1 , , , ,g r t r Rθ φ = −   
and 
 ( )2 , , , .g r t tθ φ φ ω= −   
The Lagrange equations of motion in the presence of constraints are 
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Hence, the three equations of motion are 
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On applying the equations of constraint, these equations become 
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The generalized forces of constraint are 
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By inspection of the equations of motion (1), we see that Qr is the radial component of 
the normal force that is exerted by the wire of the bead. Similarly, by recognizing that 

2 2sinmr θφ�  is the component of the angular momentum of the bead parallel to the axis of 
rotation of the wire, we see that Qφ is a torque about the axis of rotation of the wire due to 
the other component of the normal force, which must have magnitude 
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As a check, consider an equilibrium position for the case, 2 .R gω ≥  We have 

2 cos .R gω θ = −  Then 
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which agrees with what is obtained by applying Newton’s laws of motion (consider the 
component of the normal force that is required to balance the force of gravity). 
 
 



2. Consider a bead of mass m sliding without friction on a wire that is bent into the shape 
of a parabola and spun with constant angular velocity ω  about its vertical axis.  Use 
cylindrical polar coordinates and let the equation of the parabola be 2.z kρ=  Write down 
the Lagrangian in terms of ρ as the generalized coordinate. Find the equation of motion 
of the bead and determine whether there are positions of equilibrium. Discuss the stability 
of an equilibrium positions you find. 
 
Solution: The kinetic and potential energies are 
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Hence the Lagrangian is 

 ( )2 2 2 2 2 2 21 4 .
2

L m k mgkρ ρ ω ρ ρ ρ= + + −� �  

The equation of motion is 

 ( ) ( )2 2 2 2 21 4 4 2 .d m k m k mgk
dt

ρ ρ ρω ρρ ρª º+ = + −¬ ¼� �  

This simplifies to 
 ( )2 2 2 2 21 4 4 2 .k k gkρ ρ ρω ρρ ρ+ = − −�� �  
 
The condition for equilibrium is that all the time derivatives are zero. Hence equilibria 
occur at 0,ρ =  and when 2 2 .gkω =  
 
To test 0ρ = for stability, we expand the equation of motion about this point. The 
linearized equation is 
 ( )2 2 .gkρ ω ρ= −��  
From this we see that stability requires 
 2 2 .gkω <  
 
When 2 2 ,gkω = the equation of motion is 
 ( )2 2 2 21 4 4 .k kρ ρ ρρ+ = −�� �  
This can be written as  
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which can be integrated with respect to time to get  

 ( )2 21ln ln 1 4 ,
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where C is a constant of integration. Hence  
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where A is also constant. We see that if A > 0, then ρ� is always positive and hence 
.ρ →∞  Similarly, if A < 0, then ρ� is always negative and hence 0.ρ →  We conclude 

that the equilibrium is unstable with the possible exception of 0.ρ =  The stability of the 
equilibrium point at 0ρ = depends on the nature of the perturbation. If the perturbation 
has an initial 0,ρ >�  then the equation above shows that 0ρ >� for all time and the mass 
does not return to the equilibrium point. We have to conclude that 0ρ = is an unstable 
equilibrium. 
 
Alternatively, since the Lagrangian does not explicitly depend on t, the Hamiltonian is 
conserved. The Hamiltonian is 
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By considering the last term on the right hand side as an effective potential, we reach the 
same conclusions as above. 
 
 
3. Let ( )1, , nF F q q= " be any function of the generalized coordinates of a system with 

Lagrangian ( )1 1, , , , , , .n nL q q q q t� �" "  Prove that L and L L dF dt′ = +  give exactly the 
same equations of motion. 
 
Solution: The equations of motion obtained from L′ are 
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Since F does not depend explicitly on time and the generalized velocities 
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Since the partial derivatives of F are also simply functions of the generalized coordinates, 
we have 
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Assuming that the function F is sufficiently well behaved that the order of partial 
differentiation is interchangeable, the right hand side is zero and hence the terms inside 
the square brackets in equation (2) sum to zero. We conclude that L and L′  give exactly 
the same equations of motion.  
 
 



4. Write down the Lagrangian for the simple 
pendulum in terms of the rectangular coordinates x 
and y. These coordinates are constrained to satisfy the 
equation ( ) 2 2, 0.f x y x y l= + − =   
 
(a) Write down the two modified Lagrange equations. 
Comparing these with the two components of 
Newton’s second law, show that the Lagrange 
multiplier is (minus) the tension in the rod. Verify 
that this is consistent with the expressions for the 
generalized force.   
 
(b) The constraint equation can be written in many 
different ways.  For example, we could have written 
( ) 2 2 2, 0.g x y x y l= + − =  Check that this function would have given the same physical 

results. 
 
Solution: The Lagrangian is 

 ( )2 21 .
2

L m x y mgy= + +� �  

  
(a) The Lagrange equations of motion with the constraint are 

 ,d L L f
dt q q q

λ
§ ·∂ ∂ ∂

= +¨ ¸∂ ∂ ∂© ¹�
 

where λ  is the Lagrange multiplier. 
 
The x – equation is 
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and the y – equation is 
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The two Newtonian equations are 
 sin ,mx T φ= −��  
and 
 cos ,my T mgφ= − +��  
 
where T is the tension in the rod. Hence, we see that the Lagrange multiplier is indeed 
minus the tension. 
 
The generalized forces of constraint are 
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which is consistent with Newton’s second law. 
  
(b) Repeating the analysis with the constraint in the form ( ) 2 2 2, 0,g x y x y l= + − =  we 
find that the equations of motion are 

 ( ) 2 ,d mx x
dt

λ=�  

and  

 ( ) 2 .d my y mg
dt

λ= +�  

We see that the Lagrange multiplier is now 2 ,T lλ = −  and not simply the tension in the 
rod.  
 
The generalized forces of constraint are now 
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These are same as above and hence the same physical results are obtained. 
 


