1. CH32 E-17.
2. CH32 E-32.
3. CH32 E-35.
4. CH32 P-2.
5. CH32 P-6 and 7.

How much differential change in $m(d m)$ causes a change in $x(d x)$?

$$
d m=\sqrt{\frac{m B^{2} q}{2 \Delta V}} d x
$$

6. CH32 P-12.

Set the x-axis along the line connecting a and b. The coordinates for a and b are ($0,0,0$) and $(0,0, L) . \vec{F}_{B}=i \int d \vec{\ell} \times \vec{B}$ where the differential element $d \vec{\ell}=\hat{i} d x+\hat{j} d y$.
7. A uniform electric field $\vec{E}=E_{o} \hat{k}$ is applied at right angles to the uniform magnetic field $\vec{B}=B_{o} \hat{i}\left(E_{o}, B_{o}>0\right)$. A particle of mass m and charge $+q$ is released at the origin.
(A) Explain why the motion of the particle is in the $y-z$ plain.
(B) Show that the equation of motion of this particle will produce two coupled equations:

$$
\begin{gathered}
q B_{o} \frac{d z}{d t}=m \frac{d^{2} y}{d t^{2}}, \\
q E_{o}-q B_{o} \frac{d y}{d t}=m \frac{d^{2} z}{d t^{2}} .
\end{gathered}
$$

(C) Without an electric field, when a positive charge of $+e$ and mass m is with a speed of v. It will make a circular motion as we discussed in class. Set up the equations fo motion for this case and solve to show that it is a constant speed circular motion. Try as far as you can.
8. CH32 P-17.
9. CH32 P-18.
10. CH32 P-19.

Review how you reach Eq. 32-34. The torque from the magnetic force should balance that from gravity. The pivot point is the contact point where cylinder touches the plain. $\tau_{G}=$ $m g r \sin \theta$

