1. CH26 Q-11.

Pay attention to the dependence on the distance. For a point charge $E \propto 1 / r^{2}$, for a dipole $E \propto 1 / r^{3}$, and for a quadrupole $E \propto 1 / r^{4}$. From the dimensional point of view, does it make sense?

2. CH26 E-19.

3. Using the online simulation at http://www.falstad.com/vector3de/, simulate the electric field lines of a quadrupole moment as shown in Figure 26-27 (Q-11). Sketch the field lines on the $x-y$ plain (z-slice in the simulation) with the minimal charge spacing. This configuration will show the quadrupole field lines at a large distance. Compare the direction of the electric field along the diagonal direction and the x-direction.
4. CH26 E-39.
5. CH26 P-2.

For $d \ll \sqrt{x^{2}+z^{2}}$,

$$
\frac{1}{\left\{x^{2}+(z \pm d / 2)^{2}\right\}^{3 / 2}} \approx \frac{1}{\left(x^{2}+z^{2}\right)^{3 / 2}}\left(1 \mp \frac{3}{2} \frac{z d}{x^{2}+z^{2}}\right) .
$$

Expand the denominator, then immediately $x^{2}+z^{2} \pm z d+(d / 2)^{2} \approx\left(x^{2}+z^{2}\right) \pm z d$ (why?). Factor out $\left(x^{2}+z^{2}\right)$ then $z d /\left(x^{2}+z^{2}\right)$ becomes the small parameter for expansion.
6. CH26 P-11.
(i) What is the net force (Coulomb + gravitational force) on the electron? (ii) Then you can calculate the y-component velocity from the effective acceleration at the height of d and how long it would take to the height. (iii) During the time will it travel along the x-direction far enough to escape or not?
7. Ch26 P-12.

At this point you know you have to do Taylor expansion to get a form $F \propto z$ for $z \ll R$ near the center of the ring. This is the opposite limit of $z \gg R$.
8. CH26 P-14.

You do not have to solve this problem. But I ask you to think about this. I will discuss this in class. For a mass loaded spring, the equation of motion is $m \ddot{x}=-k z$ and the linear oscillation frequency $f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$. For a rotational oscillation, the equation of motion is based on the torque $\vec{\tau}=\vec{r} \times \vec{F}: \vec{\tau}=I \ddot{\theta}=-\alpha \theta$, and the rotational frequency is $f=\frac{1}{2 \pi} \sqrt{\frac{\alpha}{I}}$ where I is the moment of inertia and α is the torsional spring constant. Check the physical dimensions of α and I if they produce $[f]=T^{-1}$.

9. CH27 E-3.

This figure may be helpful.

FIG. 1:
10. CH27 E-25.
11. CH27 P-14.
\vec{r} is the radial vector to a point inside the hole (P). Then $\vec{a}=\vec{r}-\vec{b}$ where \vec{b} is the vector to the point P from the center of the hole $\left(O^{\prime}\right)$.

FIG. 2:
12. CH27 P-19.

Inside an isolated conductor $\vec{E}=0$.

