Formula-sheet: Exam 1

- For constant acceleration \vec{a} :

$$
\begin{array}{ll}
\vec{v}=\vec{v}_{0}+\vec{a} t & v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) \\
\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} & v_{y}^{2}=v_{y 0}^{2}+2 a_{y}\left(y-y_{0}\right)
\end{array}
$$

Acceleration due to gravity: $g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}$ vertically down.

- For force acting on a body of mass $m: \vec{F}=m \vec{a}$
- Frictional forces: $f_{s, \max }=\mu_{s} N ; \quad f_{k}=\mu_{k} N . \quad N$: normal force.
- For uniform circular motion: centripetal acceleration is $a_{c}=\frac{v^{2}}{r}$
- Kinetic energy: $K=\frac{1}{2} m v^{2}$
- Work done by a constant force: $W=\vec{F} \cdot \vec{d}=F d \cos$ (angle between \vec{F} and \vec{d}).
- Work-kinetic energy theorem: $W=K_{f}-K_{i}$
- Vectors (2d): $\vec{A}=\hat{i} A_{x}+\hat{j} A_{y} ; \quad A=\sqrt{A_{x}^{2}+A_{y}^{2}}$;
$A_{x}=A \cos ($ angle between \vec{A} and $\hat{i}) ; \quad A_{y}=A \sin ($ angle between \vec{A} and $\hat{i})$.

