1. Two small identical metal spheres carry charges of $\mu \mathrm{C}$ and $8.5 \mu \mathrm{C}$ and are 5.66 m apart. Now the spheres are touched together and again separated to 5.66 m . What force does one exert on the other? (in N)
(1) $1.36 \times 10^{-3}(2) 3.34 \times 10^{-3}(3) 15.67 \times 10^{-3}(4) 6.07 \times 10^{-4}(5) 10.38 \times 10^{-2}$

Solution:
Once the two sphere touch, the charge is homogenously distributed through the two spheres.
Each one will have a charge of $(8.5-4.1) / 2=2.2 \mu \mathrm{C}$.
Now

$$
\begin{align*}
F & =k \frac{q_{1} q_{2}}{r_{12}^{2}} \tag{1}\\
& =8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\left(\frac{2.2 \times 10^{-6} \mathrm{C}}{5.66 \mathrm{~m}}\right)^{2} \tag{2}\\
& =8.99\left(\frac{2.2}{5.66}\right)^{2} \times 10^{-3} \mathrm{~N} \tag{3}\\
& =1.36 \times 10^{-3} \mathrm{~N} \tag{4}
\end{align*}
$$

Thus, the answer is (1).
2. Two point charges are on the x -axis. A $3.6 \mu \mathrm{C}$ charge is at $\mathrm{x}=0 \mathrm{~m}$ and a $-0.4 \mu \mathrm{C}$ charge is at $\mathrm{x}=6 \mathrm{~m}$. Where can a third charge be placed so that the net force on it is zero? (in m)
(1) $\mathrm{x}=9(2) \mathrm{x}=2(3) \mathrm{x}=-5(4) \mathrm{x}=4(5) \mathrm{x}=12$

Solution:
When is the net force zero? When the force from the first F_{1} compensates the force from the second F_{2} charge.

$$
\begin{align*}
& F_{1}=k \frac{3.6 \times 10^{-6} q_{3}}{(0-x)^{2}} \frac{\mathrm{C}}{\mathrm{~m}^{2}} \tag{5}\\
& F_{2}=-k \frac{0.4 \times 10^{-6} q_{3}}{(6-x)^{2}} \frac{\mathrm{C}}{\mathrm{~m}^{2}} \tag{6}
\end{align*}
$$

Now

$$
\begin{align*}
F_{1}+F_{2} & =0 \tag{7}\\
k \frac{3.6 \times 10^{-6} q_{3}}{(0-x)^{2}} \frac{\mathrm{C}}{\mathrm{~m}^{2}} & =k \frac{0.4 \times 10^{-6} q_{3}}{(6-x)^{2}} \frac{\mathrm{C}}{\mathrm{~m}^{2}} \tag{8}\\
\frac{3.6}{(0-x)^{2}} & =\frac{0.4}{(6-x)^{2}} \tag{9}\\
3.6\left(6^{2}-12 x+x^{2}\right) & =0.4 x^{2} \tag{10}\\
6^{2}-12 x+x^{2} & =\frac{x^{2}}{9} \tag{11}\\
6^{2}-12 x+\frac{x^{2}}{9} & =0 \tag{12}
\end{align*}
$$

using the standart formula for a quadratic equation

$$
\begin{align*}
x_{1 / 2} & =\frac{9}{8} \frac{12 \pm \sqrt{(12)^{2}-4 \times 6^{2} \frac{8}{9}}}{2} \tag{13}\\
& =\frac{9}{8}(6 \pm 2 \sqrt{9-8}) \tag{14}\\
& =\frac{9}{8}(6 \pm 2) \tag{15}
\end{align*}
$$

so that $x_{1}=9$ and $x_{2}=\frac{9}{2}$. Thus, the answer is (1).
3. A uniform electric field, with a magnitude of $1625 \mathrm{~N} / \mathrm{C}$, is directed parallel to the positive x -axis. If a proton is released from rest at $\mathrm{x}=-4.0 \mathrm{~m}$, what is its kinectic energy as the proton reaches $\mathrm{x}=4 \mathrm{~m}$? (in joules)
(1) $2.08 \times 10^{-15}(2) 9.6 \times 10^{-16}$ (3) 1300 (4) 0 (5) 3.84×10^{-14}

Solution:
There is a constant force $F=1625 \frac{\mathrm{~N}}{\mathrm{C}} \times 1.6 \times 10^{-19} \mathrm{C}=1.625 \times 1.6 \times 10^{-16} \mathrm{~N}$. Now $E=F \times 8 \mathrm{~m}=20.8 \times 10^{-16} \mathrm{Nm}$.

Thus, the answer is (1).
4. Two charges are placed on the x axis. One is $2.0 \mu \mathrm{C}$ at $\mathrm{x}=-1 \mathrm{~m}$. The other is $3.0 \mu \mathrm{C}$ at $\mathrm{x}=2.0 \mathrm{~m}$. What is the electric field at the point $\mathrm{x}=0$ due to these charges? (in N/C)
(1) $1.13 \times 10^{2}(2) 3.34 \times 10^{2}(3) 15.67 \times 10^{2}$ (4) $6.07 \times 10^{4}(5) 10.38 \times 10^{2}$

Solution:

A charge of q_{0} at x_{0} creates an electric field at r of

$$
\begin{equation*}
E\left(x_{0}-r\right)=k \frac{q_{0}}{\left|r-x_{0}\right|^{2}} \tag{16}
\end{equation*}
$$

Charge 1 creates thus a field at 0 m of $E_{1}=k \frac{2.0 \times 10^{-6} \mathrm{C}}{\mathrm{m}^{2}}$ while charge 2 creates a field of $E_{2}=k \frac{3.0 \times 10^{-6} \mathrm{C}}{4 \mathrm{~m}^{2}}$ that we have to add to compute the total field. At $x=0 \mathrm{~m}$ is

$$
\begin{align*}
E(0 \mathrm{~m}) & =10^{-6} \mathrm{C} k \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\left(\frac{2.0}{\mathrm{~m}^{2}}+\frac{3.0}{4 \mathrm{~m}^{2}}\right) \tag{17}\\
& =8.99 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{C}}\left(2+\frac{3}{4}\right) \tag{18}\\
& =2.47 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \tag{19}
\end{align*}
$$

Thus answer (4) is closest.
5. Adding the values according to the rules $R_{t}=R_{1}+R_{2}$ when in series, or $\frac{1}{R_{t}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ when in parallel. Looking at the figure we find

$$
\begin{align*}
R_{t} & =\left\{(3.0 \Omega+5.0 \Omega)^{-1}+\left[\left(\frac{1}{6 \Omega}+\frac{1}{12 \Omega}\right)^{-1}+4.0 \Omega\right]^{-1}\right\}^{-1} \tag{20}\\
& =\left\{(8.0 \Omega)^{-1}+\left[\frac{12 \Omega}{3}+4.0 \Omega\right]^{-1}\right\}^{-1} \tag{21}\\
& =\left\{\frac{1}{8.0 \Omega}+\frac{1}{8.0 \Omega}\right\}^{-1} \tag{22}\\
& =4.0 \Omega \tag{23}
\end{align*}
$$

Thus answer (1) is correct.
6. We use the formula $V=I \times R$ (Ohm's law), so the total current is

$$
\begin{equation*}
\frac{12 \mathrm{~V}}{4.0 \Omega}=3 \mathrm{~A} \tag{24}
\end{equation*}
$$

Since the equivalent resistors up and down are the same according to 5.), we immediately see answer (1) is correct.
7. Wire 1: $R_{1}=8 \Omega$ for an area A_{1} of the wire. Doubeling the diameter $d_{2}=2 d_{1}$ means squaring the area the current can flow through because

$$
\begin{equation*}
A_{1}=\frac{\pi}{4} d_{1}^{2} \Rightarrow A_{2}=4 A_{1} \tag{25}
\end{equation*}
$$

On the other hand the length is 3 times the original one.
Thus, we solve

$$
\begin{equation*}
R_{t}=3\left(\frac{1}{R_{1}}+\frac{1}{R_{1}}+\frac{1}{R_{1}}+\frac{1}{R_{1}}\right)^{-1}=\frac{3}{4} R_{1}=6 \Omega \tag{26}
\end{equation*}
$$

Again, answer (1) is correct.
8. We calculate the circut on the right using that the sum of all voltages present in a loop must be zero. Thus, together with the first Kirchhoff law

$$
\begin{equation*}
I_{1}=I_{2}+I_{3} \tag{27}
\end{equation*}
$$

in the left loop

$$
\begin{align*}
5 \mathrm{~V}+8 \mathrm{~V}-3 \mathrm{~V}+V_{1 u}+V_{m} & =0 \tag{28}\\
I_{1} R_{1}+I_{3} R_{m} & =0 \tag{29}\\
10 \mathrm{~V}+10 \Omega I_{1}+10 \Omega I_{3} & =0 \tag{30}
\end{align*}
$$

Furthermore, the right loop is

$$
\begin{equation*}
5 \mathrm{~V}+10 \Omega I_{3}-10 \Omega I_{2}=0 \tag{31}
\end{equation*}
$$

Moreover, the full loop is by analogy

$$
\begin{equation*}
5 \mathrm{~V}+10 \Omega I_{1}+10 \Omega I_{2}=0 \tag{32}
\end{equation*}
$$

Thus, Eq. (1) is missing and incorrect.
9. We go through the list:

1. Same emf, two lightbulbs in parallel \Rightarrow each has the same voltage. Thus, they shine just as bright as X.
2. (Correction:) Three emf, two lightbulbs in series \Rightarrow each has one half of the tripled voltage (3/2). Thus, they shine brighter as X .
3. For the same reason as above does each lightbulb have $2 / 3$ of the voltage applied. Thus, they do not shine as bright as X.
4. As before, but now each has $1 / 2$ of the voltage applied. Thus, they do not shine as bright as X .
5. Two emf's in parallel, so their voltage is the same as just one emf. However, there are two lightbulbs in series \Rightarrow each has $1 / 2$ of the voltage applied. Thus, they do not shine as bright as X.
6. The charge on a capacitor is

$$
\begin{equation*}
Q=C \times V \tag{33}
\end{equation*}
$$

First, we need calculate what the equivalent capacitor is, i.e. how much charge is in fact in the system. The rule is

$$
\begin{align*}
C_{t} & =\left[C_{1}^{-1}+\left(C_{2}+C_{3}\right)^{-1}\right]^{-1} \tag{34}\\
& =\left[\frac{1}{4 \mu \mathrm{~F}}+\frac{1}{16 \mu \mathrm{~F}}\right]^{-1} \tag{35}\\
& =\frac{16}{5} \mu \mathrm{~F} \tag{36}
\end{align*}
$$

Thus, with 20 V applied, there is a charge of

$$
\begin{equation*}
Q_{t}=20 \times \frac{16}{5} \mu \mathrm{C}=4^{3} \mu \mathrm{C} \tag{37}
\end{equation*}
$$

All capacitors in series have the same charge $Q_{1}=Q_{2}+Q_{3} \equiv Q_{t}$. Since C_{2} and C_{3} are parallel, they have to have the same voltage

$$
\begin{align*}
V_{2} & =V_{3} \tag{38}\\
\frac{Q_{2}}{C_{2}} & =\frac{Q_{3}}{C_{3}} \tag{39}\\
\frac{Q_{2}}{Q_{3}} & =\frac{C_{2}}{C_{3}}=\frac{10}{6} \tag{40}
\end{align*}
$$

together with

$$
\begin{align*}
4^{3} \mu \mathrm{C} & =Q_{2}+Q_{3} \tag{41}\\
\frac{4^{3} \mu \mathrm{C}}{Q_{3}} & =1+\frac{Q_{2}}{Q_{3}} \tag{42}\\
\frac{4^{3} \mu \mathrm{C}}{Q_{3}} & =1+\frac{10}{6} \tag{43}\\
16 \times 4 \mu \mathrm{C} & =\frac{16}{6} Q_{3} \tag{44}
\end{align*}
$$

Thus, we find

$$
\begin{equation*}
Q_{3}=24 \mu \mathrm{C} \tag{45}
\end{equation*}
$$

which is answer (1).

