

Phy2005 Applied Physics II Spring 2018

Announcements:

	+						
				1, 5, 8, 11,		capacitor, field	
January	29	м	9	13, 17	20.1 - 20.5	line in capacitor	
						current, resistance,	
				23, 25, 26,		Ohm's law,	Ohm's law,
January	31	w	10	30, 35	20.6 - 20.11	R-network	series/parallel ct.
				37, 38, 39,	20.12 -		copper-steel wire,
February	2	F	11	43, 47, 51	20.14	power, resistivity	electron drift

• Practice Test 1 posted on Tests page soon.

- Answers to chapter 20 problems posted on HW page soon
- On *Friday*, one Top Hat quiz problem will be "directly" from HW

Science news page

Crazy physicist Andreas Wahl - Stunt #1

<u>http://qz.com/602155/video-a-</u> physicist-puts-his-life-on-the-line-forthe-love-of-science/

Unit of capacitance: [C] = [Q/V] = C/V = F (farad)

Capacitance: measure of charge stored per unit potential difference

Reduction to equivalent capacitance

Today: Resistance, resistors, Ohm's & Kichoff's laws

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the <u>UF academic honesty policy</u>.
Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Have your phone ready!

Q1: What must be the capacitance of a device that is to hold a Charge of 2 μ C when 1000V is connected across it?

1. 5 x10⁸ F 2. 2 F 3. 5 F 4. 2 x 10⁶ F 5. 2 x 10⁻⁹ F

$I = Ne/\Delta t [C/s = Ampere]$

Michael Faraday 1791-1867 Farad = SI unit of *capacitance*

André-Marie Ampère 1775-1836 Ampere = SI unit of *current*

Current (I):

amount of charge flowing through a point per unit time [I] = C/s = A (ampere)

Current flows from higher potential to lower potential.

Electrical conduction in a metal

Electrons initially attached to atoms in metal become free to move

Their flow can be started, e.g. by a battery

Collisions with various things slow the flow down

https://www.youtube.com/watch?v=DbK <u>ECtWNm8k</u>

$$V = I R$$

Resistance, R = V/I
[R] = V/A = Ω (Ohm)

•For a fixed potential difference across a resistor, the larger R, the smaller current passing through it.

Know how to reduce resistor network to "equivalent resistance"

Parallel connection

Series connection

$R_{eq} = R_1 + R_2 + R_3$

Rules are "opposite" to those for capacitors! Ex. 10-1. What is the ratio of the current flowing through each resistor $(I_1:I_2)$ in the circuit?

1:1
 3:1
 1:4
 Need more info.

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the <u>UF academic honesty policy</u>.
Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Ex. 10-2. What is the ratio of the current flowing through each resistor $(I_1:I_2)$?

- No potential difference along the electrical wire (assume R = 0).
- Electrical wires can be bent and/or stretched.
- A Node point (branching point) can be moved arbitrarily along the wire (but cannot cross circuit elements).

