Phy2005 Applied Physics II Spring 2018

Announcements:

January	29	M	9	$\begin{gathered} 1,5,8,11 \\ 13,17 \\ \hline \end{gathered}$	20.1-20.5	capacitor, field line in capacitor	
January	31	W	10	$\begin{gathered} 23,25,26 \\ 30,35 \\ \hline \end{gathered}$	20.6-20.11	current, resistance, Ohm's law, R-network	Ohm's law, series/parallel ct.
February	2	F	11	$\begin{gathered} 37,38,39, \\ 43,47,51 \end{gathered}$	$\begin{gathered} 20.12 \\ 20.14 \end{gathered}$	power, resistivity	copper-steel wire, electron drift

- Practice Test 1 posted on Tests page soon.
- Answers to chapter 20 problems posted on HW page soon
- On Friday, one Top Hat quiz problem will be "directly" from HW

Science news page

Crazy physicist Andreas Wahl - Stunt \# 1

http://qz.com/602155/video-a-physicist-puts-his-life-on-the-line-for-the-love-of-sciencel

Last time: Capacitors

$$
Q=C V
$$

Unit of capacitance: $[C]=[Q / V]=C / V=F(f a r a d)$
Capacitance: measure of charge stored per unit potential difference

A
$\dagger d$
$C=\varepsilon_{0} A / d$
for a parallel plate capacitor
ε_{0} : permittivity of free space $8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
d Dielectric material (insulator)
$C=K \varepsilon_{0} A / d$
K: dielectric constant (material property)

Reduction to equivalent capacitance

Today: Resistance, resistors, Ohm's \& Kichoff's laws

Tonlar (untine

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the UF academic honesty policy. Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Have your phone ready!

Q1: What must be the capacitance of a device that is to hold a Charge of $2 \mu \mathrm{C}$ when 1000 V is connected across it?
$1.5 \times 10^{8} \mathrm{~F}$
2.2 F
3.5 F
$4.2 \times 10^{6} \mathrm{~F}$
$5.2 \times 10^{-9} \mathrm{~F}$

Michael Faraday
1791-1867
Farad $=$ SI unit of capacitance

André-Marie Ampère 1775-1836
Ampere $=$ SI unit of current

Current (I):

amount of charge flowing through a point per unit time

$$
[\mathrm{I}]=\mathrm{C} / \mathrm{s}=\mathrm{A} \text { (ampere) }
$$

Current flows from higher potential to lower potential.

Electrical conduction in a metal

Electrons initially attached to atoms in metal become free to move
Their flow can be started, e.g. by a battery
Collisions with various things slow the flow down

https://www.youtube.com/watch?v=DbK EC+WNm8k
$\mathrm{V}=\mathrm{I} \mathrm{R}$
Resistance, $\mathrm{R}=\mathrm{V} / \mathrm{I}$
$[\mathrm{R}]=\mathrm{V} / \mathrm{A}=\Omega(\mathrm{Ohm})$
-For a fixed potential difference across a resistor, the larger R, the smaller current passing through it.

Develop a potential difference

$$
\mathrm{V}=\mathrm{RI}
$$

Know how to reduce resistor network to "equivalent resistance"

Parallel connection

Series connection

$\mathbf{R}_{\mathrm{eq}}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{\mathbf{3}}$
$1 / \mathrm{R}_{\text {eq }}=$
$1 / R_{1}+1 / R_{2}+1 / R_{3}$

Ex. 10-1. What is the ratio of the current flowing through each resistor $\left(\mathrm{I}_{1}: \mathrm{I}_{2}\right)$ in the circuit?

1. $1: 1$
2. $3: 1$
3. $1: 4$
4. Need more info.

Tonlar (untine

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the UF academic honesty policy. Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Have your phone ready!

Ex. 10-2. What is the ratio of the current flowing through each resistor $\left(\mathrm{I}_{1}: \mathrm{I}_{2}\right)$?

1. $1: 1$
2. $3: 1$
3. $1: 4$
4. None of above

- No potential difference along the electrical wire (assume $\mathrm{R}=0$).
- Electrical wires can be bent and/or stretched.
- A Node point (branching point) can be moved arbitrarily along the wire (but cannot cross circuit elements).

$$
\begin{gathered}
R^{\prime \prime}=R^{\prime}+7=9.22 \\
\frac{1}{R_{e q}}=\frac{1}{8}+\frac{1}{R^{\prime \prime}}+\frac{1}{6} \\
R_{e q}=2.50
\end{gathered}
$$

