

Phy2005 Applied Physics II Spring 2016

Announcements:

				4 5 0 44			
				1, 5, 8, 11,		capacitor, field	
January	29	м	9	13, 17	20.1 - 20.5	line in capacitor	
						current, resistance,	
				23, 25, 26,		Ohm's law,	Ohm's law,
January	31	w	10	30, 35	20.6 - 20.11	R-network	series/parallel ct.
				37, 38, 39,	20.12 -		copper-steel wire,
February	2	F	11	43, 47, 51	20.14	power, resistivity	electron drift

Solutions to chapter 19 problems posted on HW page today.

- Answers to chapter 20 problems posted on HW page soon.
- On Friday, one Top Hat Question will be "directly" from HW

Last time: Electric potential/potential energy

Electric Potential Energy (move the charge against the field with your hand)

Gravitational Potential Energy

Electric Potential Difference $\Delta \varepsilon = E$ -pot. Energy/charge = qEd/q = Ed[ε] = N.m/C = J/C= Volt

Electric potential has nothing to do with the type and size of the charge! As you follow the electric field lines, the electric potential gets LOWER.

Today: Circuit elements: 1) capacitors

Science news page

Rap Battle With B.o.B Over Flat Earth Theory

🍠 Follow

The cities in the background are approx. 16miles apart... where is the curve ? please explain this

7:05 PM - 24 Jan 2016

\$\$\$2,759
 \$\$2,279

"Aye, Neil Tyson need to loosen up his vest / They'll probably write that man one hell of a check."

"I see only good things on the horizon / That's probably why the horizon is always rising / Indoctrinated in a cult called science / And graduated to a club full of liars."

Circuit Elements: capacitor, resistor, and Ohm's law

Capacitors

Any two conductors separated by an insulator: capacitor

$$Q = CV$$

Unit of capacitance: [C] = [Q/V] = C/V = F (farad)

Capacitance: measure of charge stored per unit potential difference

Ex. When a capacitor is connected to a 9-V battery, 3 μC of charge is stored. What is the capacitance?

$$C = Q/V = (3 \times 10^{-6} C)/9 V = 0.33 \mu F$$

$C = \mathbf{K} \varepsilon_0 \mathbf{A} / \mathbf{d}$

K: dielectric constant (material property)

material	K
vacuum	1
glass	7.5
rubber	3.0
oil	4.0
water	80.4

Ex 10-1 Each plate of a parallel capacitor is 2 cm wide and 2 cm long. What separation between the plates is required to have a capacitance of 6 pF?

d = 0.59 mm

Ex 10-2 The 6 pF capacitor constructed in the previous Ex. is now immersed in oil. Will the capacitance change? If yes, what is the new capacitance value?

C = 24 pF

material	K		
vacuum	1		
glass	7.5		
rubber	3.0		
oil	4.0		
water	80.4		

Parallel connection

Series connection

 $1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3$

$$Q_1 = Q_2 = Q_3 = Q$$

 $V_1 + V_2 + V_3 = V$

Ex 10-3 Two capacitors of 3 μ F and 6 μ F are connected in parallel. What is the equivalent capacitance?

$$C_{eq} = C_1 + C_2 = 9 \ \mu F$$

Ex 10-4 Two capacitors of 3 μ F and 6 μ F are connected in series. What is the equivalent capacitance?

$$1/C_{eq} = 1/C_1 + 1/C_2 = \frac{1}{2}$$

$$C_{eq} = 2 \ \mu F$$

Ex 10-4 What is the equivalent capacitance of the following circuit? Capacitance in pF.

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the <u>UF academic honesty policy</u>.
Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Have your phone ready!

Q1 (Prob. 20.1) A potential difference of 25 V exists across a 0.75F capacitor. How large is the charge on the capacitor?

1. 19 mC
 2. 0.3 N
 3. 0.3J
 4. 0.3C
 5. 19 μC

Q2 Two circuits are constructed with identical 1 pF- capacitors. What are the equivalent capacitances?

Electric current I = Ne $/\Delta t$ [C/s = Ampere]

Current (I):

amount of charge flowing through a point per unit time [I] = C/s = A (ampere)

Current flows from higher potential to lower potential.

$$V = R I$$

Resistance, $R = V/I$
[R] = V/A = Ω (Ohm)

•For a fixed potential difference across a resistor, the larger R, the smaller current passing through it.

R = V/IV = IRI = V/ROhm's Law

How much charge can it hold per Unit potential difference?

C = Q/V [farad]

24

Parallel connection

Series connection

$R_{eq} = R_1 + R_2 + R_3$

Q2. What is the ratio of the current flowing through each resistor $(I_1:I_2)$ in the circuit?

1. 1:1
 2. 3:1
 3. 1:4
 4. Need more info.

Q3. What is the ratio of the current flowing through each resistor $(I_1:I_2)$?

1. 1:1
 2. 3:1
 3. 1:4
 4. None of above

- No potential difference along the electrical wire (assume R = 0).
- Electrical wires can be bent and/or stretched.
- A Node point (branching point) can be moved arbitrarily along the wire (but cannot cross circuit elements).

