

Phy2005 Applied Physics II Spring 2017

Announcements:

						charge, conductor/insulator, induced charge	pithballs, pingpong, electroscope
January	19	F	$\mathbf{5}$	$\mathrm{Q}, 3,4$	$19.1-19.5$		
January	22	M	$\mathbf{6}$	Coulomb's law, superposition			
				$23,17,19$	$19.6-19.7$	27, 28,	
January	24	W	7	$31,32,37$	$19.8-19.12$	E-field and electric potential	Faraday shielding, cell ph demo
					40,42,	$19.13-$	potential energy, motion of charge in E-field
January	26	F	$\mathbf{8}$	48,49	19.16		van de graaff

- Solutions to chapter 19 problems posted on HW page.

Last time: Electric fields

$$
\begin{aligned}
& \vec{E}=\vec{F}_{E} / q \\
& \vec{F}_{E}=q \vec{E}
\end{aligned}
$$

Put a charge q at $p t . A$, and it will experience an electric force $F=q E$

Electric field is perpendicular to a conducting surface

Electric field lines begin on + charges and end on - charges

Q1 Two parallel conducting plates are charged as shown in the figure. An electron is injected between the plates from the left side (see figure). Which curve describes the trajectory of the electron correctly?

1. A
2. B
3. C
4. D

http://www.dlt.ncssm.edu/TIGER/diagrams/structure/CRT-Plates640.gif

Work-Energy Theorem
The work of a net external force on an object is equal to the change in kinetic energy of that object

Electric Potential Energy (move the charge against the field with your hand)

Gravitational Potential Energy

Electric Potential Energy of the object increased by qEd.
Gravitational Potential Energy of the object increased by mgh.

Ex 8-1 A +5 mC charge is moved against a uniform electric field of $2000 \mathrm{~N} / \mathrm{C}$ by a distance of 10 m . What is the change in electrical potential energy of the charge?

$$
\begin{aligned}
& \Delta \text { AP.E. }=\text { qEd } \\
& =100 \mathrm{~J} \text { (increase) }
\end{aligned}
$$

Now move the charge the other way with your hand

Electric Potential Energy of the objected decreased by qEd.

Q: how much work is done by a) electric force b) pushing force?
A: a) qEd b) $-q E d$
Note total work done is zero \Rightarrow kinetic energy same before \& affer!

Ex 8-2 A +5 mC charge was released in a uniform electric field of $2000 \mathrm{~N} / \mathrm{C}$ and moves along the field line by 10 m . What is the net external force acting on the charge during the process? How much work was done by this force?

$$
\mathrm{W}=\mathrm{qEd}=+100 \mathrm{~J}
$$

(increase in kinetic energy)

Potential energy for $+q$ increases A-> B
However, potential energy for $-q$ increases B-> A.

Electric Potential

(different from electric potential energy)

$$
\begin{aligned}
& \text { Electric Potential Difference } \\
& \begin{aligned}
& \Delta \varepsilon=\text { E-pot. Energy/charge } \\
&=q E d / q=\text { Ed } \\
& {[\varepsilon] }=N . m / C \\
&=J / C \\
&= \text { Volt }
\end{aligned}
\end{aligned}
$$

Electric potential has nothing to do with the type and size of the charge!
As you follow the electric field lines, the electric potential gets LOWER.

F = qE

High E. potential
(+) charge side

Potential energy for $+q$ increases $A \rightarrow B$

However, potential energy for $-q$ increases $B \rightarrow A$.
Electric potential at B is higher than at A for both.

Comparison with GRAVITY

Gravitational (on the earth)	Electric
Mass, $\mathrm{m}(\mathrm{Kg})$ Only 1 type	Charge, $\mathrm{Q}(\mathrm{C})$ + and -
$\left.\mathrm{g} \mathrm{(m/s}^{2}=\mathrm{N} / \mathrm{Kg}\right)$	E-field (N/C)
$\mathrm{mgh}(\mathrm{Nm}=\mathrm{J})$ Potential energy	QEd (J) Potential energy
gh $(\mathrm{Nm} / \mathrm{Kg})$ Gravitational potential	Ed $(\mathrm{Nm} / \mathrm{C})$ Electric potential

> Change in potential energy
> $=(P . E)_{f}-(P . E)_{i}$
> $=$ mgh
h

How much does PE change here?

$$
\Delta P E=q E d \sin (\alpha)
$$

Potential difference is $\varepsilon=E \mathrm{~d} \sin (\alpha)$.
Important!!
Along lines perpendicular to E-field potential doesn't change

Tonlar (untime

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the UF academic honesty policy. Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Have your phone ready!

Q1 A -3 mC is placed in a uniform electric field at one of 4 possible positions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Which of the following statements is wrong?

(1) At all positions, the charge feels a force to the right.
(2) The electric potential at C is higher than at A .
(3) The electric potential energy at B is the same as at C.
(4) When the charge is moved from A to D , the electric potential energy decreases.
(5) If the charge is released at D , it will move to the left.

Equipotential Line

Surface of conductor II
 Equipotential surface

Work, Energy, and Conservation

$$
\begin{gathered}
W_{e}=\Delta K . E .+\Delta P . E . \\
\Delta P . E .=-W_{c}
\end{gathered}
$$

W_{e} : work done by any forces other than conservative force such as lifting force, friction, contact force,...
W_{c} : work done by conservative forces such as electrostatic force, gravitational force

$$
\begin{aligned}
& \Delta P . E .=-W_{c}=-(-m g h)=m g h(\text { increase }) \\
& W_{e}=F_{e} h=m g h
\end{aligned}
$$

$$
W_{e}=\Delta K . E .+\Delta P . E .=m g h
$$

$$
\Delta K . E .=0 \text { (no change) }
$$

$\Delta P \cdot E .=-W_{c}=-(m g h)=-m g h$ (decrease) $W_{e}=-F_{e} h=-m g h$
$W_{e}=\Delta K . E .+\Delta P . E .=-m g h$
$\Delta K . E .=0$ (no change)
free fall

$$
\begin{aligned}
& \Delta P . E .=-W_{f f}=-(m g h)=-m g h(\text { decrease }) \\
& \Delta K . E .=-\Delta P . E .=m g h(\text { increase }) \\
& W_{e}=\Delta \text { K.E. }+\Delta P . E .=0
\end{aligned}
$$

