

Phy2005 Applied Physics II Spring 2017

Announcements:

						charge,	pithballs,
						conductor/insulator,	pingpong,
January	19	F	5	Q3, 3, 4	19.1 - 19.5	induced charge	electroscope
				5, 9, 11, 12,		Coulomb's law,	
January	22	М	6	14,17, 19	19.6 - 19.7	superposition	
				23, 27, 28,		E-field and electric	Faraday shielding,
January	24	W	7	31, 32, 37	19.8 - 19.12	potential	cell ph demo
						potential energy,	
				40, 42,	19.13 -	motion of charge	
January	26	F	8	48, 49	19.16	in E-field	van de graaff

• Solutions to chapter 19 problems posted Monday on HW page.

Last time: Coulomb's law

Today: Electric fields

Coulomb force

Gravitational force

$$F_E = k \frac{q \cdot Q}{r^2}$$

$k = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$

can be repulsive and attractive!

$$F_G = -G \frac{m_1 \cdot m_2}{r^2}$$

 $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

can only be attractive!

Non-contact forces Action-at-a-distance forces Conservative force

On the surface of the earth

$$F_G = -G \frac{m_E}{r_E^2} = -mg$$

$$\frac{F_G}{m} = g$$

gravitational force acting on a unit mass = gravitational field

• Similarly, we can define an electric field, E

$$\vec{E} = \frac{\vec{F}_E}{q}$$

Coulomb force on a (+) unit charge

Force on a positive unit charge

 → the unit for E is N/C.
 We add forces on single charge, so E-field is also superposable!!!

If there is E-field somewhere, there is a force on a charge placed there !!!
(+)-charge feels force in the E-field direction.
(-)-charge feels opposite to E-field.

 $\vec{E} = \vec{F}_E / q$ $F_E = q\vec{E}$

 $F_E = k \frac{q \cdot Q}{r^2}$

 $k = 8.988 \times 10^9 \text{ Nm}^2/\text{C}^2$ $\approx 9.0 \times 10^9 \text{ Nm}^2/\text{C}^2$

Electric field at +q produced by +Q

Electric field at +Q produced by +q

$$E = F_E / Q = k \frac{q}{r^2}$$

$$E = F_E / q = k \frac{Q}{r^2}$$

One can calculate E from a point-like charge Q at distance r from Q

 $E = k \frac{Q}{r^2}$

E-field line: collection of lines representing strength and direction of E-field in space

> Direction of the field line = E-field direction

Density of the field lines = strength of E-field

www.falstad.com/mathphysics.html

E field lines come out of (+) charges and end on (-) charges.

Ex 7-1 Calculation of electric field (I): Find the electric field at point p due to the +5 μ C.

 $E = 5.0 \times 10^5 \text{ N/C}$

Ex 7-2 The value of E field at a distance of 70 cm from a tiny charged sphere is 3500 N/C and its direction is radially in toward the sphere. (1) The type of charge on the sphere? (2) If one put a +1 C charge at the position, what is the force acting on the charge? (3) What is the charge on the sphere?

(1) negative charge
(2) 3500 N
(3) Q = -0.19 μC

Ex 7-3 Calculation of electric field (II): Find the electric field at point p due to the charges of $+5 \ \mu$ C and $-5 \ \mu$ C.

 $E_t = 5.73 \times 10^5 \text{ N/C}$ tan $\theta = 0.56, \theta = 29.3^\circ$

E field lines when more than two charges are present?

www.falstad.com/mathphysics.html

Electric field near a charged conductor

Excess charges reside on the surface of a conductor. E field lines are perpendicular to the surface.

No E-field inside conductors.

Uniform Parallel E-field

Charge is uniformly distributed on the surface. Electric field comes out perpendicular to the surface of (+) charged surface. Electric field enters perpendicular to the surface of (-) charged surface.

ACADEMIC HONESTY

Each student is expected to hold himself/herself to a high standard of academic honesty. Under the <u>UF academic honesty policy</u>.
Violations of this policy will be dealt with severely. There will be no warnings or exceptions.

Q1 What is the unit of an electric field?

(1) m/s (2) N/s (3) m.kg/s² (4) (kg.m/s²)/C (5) C/m² Q2 A+5.0 μ C point charge is placed at a point in the presence of a uniform electric field. The force acting on the charge is in the north direction with a magnitude of 5 N. Which of the following statements is wrong?

(1) The uniform field is pointing north.

(2) If a -5.0 μ C charge is placed at the same position, the uniform electric field points to south.

(3) If a -5.0 μ C charge is placed at the same position, the force acting on the charge is 5 N to the south.

(4) If one doubles the amount of charge, the force would be doubled, too.

(5) The strength of the uniform electric field is 10^6 N/C.

Demos

- Van de Graaf generator
- Electric field simulators

