Laboratory \#3

The pendulum

Arrange yourselves in groups of about four students. Think and talk about what you are doing before you actually do it.

Examine the relationship between the period of a pendulum and its length and mass. We have not done this in class, but Galileo worked out a relationship between g and the length and period of a pendulum which we can check and get a second measurement of the value of g.

To measure the period use one of the stop watches to time ten full swings (back and forth is one swing); then take the time and divide by ten to find the period. It is best to start and stop the watch when the pendulum bob goes through its lowest point - this is easier to time than when the pendulum is at one of its extremes. It is best to keep the amplitude of the swing small; when it gets too big then Galileo's relationship between l and T is no longer accurate.

First focus on the relationship between the length, l, and the period, T, of the pendulum. Measure the period a few times for each length putting the data in a table; then add an extra column to the table for T^{2}. Measure the period for about four different values of l, and also note that if l were 0.0 m then T would be 0.0 s , so you can include that as part of your data too.

Galileo thought that $l=\left(g / 4 \pi^{2}\right) T^{2}$ So if you make a graph of l (on the vertical axis) versus T^{2} (on the horizontal axis) then the slope of your graph should be $g / 4 \pi^{2}$ where, you will recall, g is the acceleration due to gravity measured last week. Make your graph plenty big. Find the slope of your graph and then estimate g using

$$
g=4 \pi^{2} \times \text { slope }
$$

How well did you do? How does your value for g this week compare to what you obtained last week?

