Pendulum

For small θ, oscillatory motion

$$
\theta=\theta_{\max } \sin \sqrt{\frac{g}{L}} t
$$

Period $T=2 \pi \sqrt{\frac{L}{g}}$

Can serve as a clock for fixed g and fixed L

Example

Grandfather clock $\mathrm{L}=2 \mathrm{~m}, \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}=2.84 \mathrm{~s}$.

Homework:

A pendulum clock that has a period of 0.5 sec on Earth is moved to a small satellite where $\mathrm{g}=\mathrm{g}($ Earth $) / 9$. What is the new period of the clock?

OR

Write a short essay (1 page maximum) on how pendulum clocks are used around the world (Big Ben and all that)

